首页 > 学习资料 > 学科资料 > 数学 >

初三学生必备数学知识点归纳复习

沈故分享 332019

沈故 分享

2023初三学生必备数学知识点归纳复习

数学概念、公式等知识点是同学们学好数学的基础,同学们一起来复习初三的数学知识点吧!下面是小编为大家整理的关于初三学生必备数学知识点归纳复习,欢迎大家来阅读。

初三学生必备数学知识点归纳复习

初三绝对值数学常见知识点

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。

(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离。

(3)几个非负数的和等于零则每个非负数都等于零。

注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。

初三必备二次根式数学考点

1、二次根式

式子叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

2、最简二次根式

若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:

(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式

几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

4、二次根式的性质

5、二次根式混合运算

二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

初三数学常考二次函数知识点

1.形如y=ax^2+bx+c(a≠0,a、b、c为常数)。的函数叫做二次函数,它的图像是一条抛物线。

2.二次函数y=ax^2+bx+c(a≠0)的顶点坐标为(-b/2a,4ac-b^2/4a),对称轴是直线x=-b/2a。

3.对于二次函数y=ax^2+bx+c(a≠0),当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。图像与y轴的交点的坐标是(0,c)。

4.一元一次方程ax^2+bx+c=0(a≠0)的解,可以看成函数y=ax^2+bx+c(a≠0)的图像与x轴交点的横坐标。

当b^2-4ac>0时,函数图像与x轴有两个交点。

当b^2-4ac=0时,函数图像与x轴有一个交点。

当b^2-4ac<0时,函数图像与x轴没有交点。

5.当a>0,且x=-b/2a时,函数y=ax^2+bx+c(a≠0)取得最小值,这个值等于4ac-b^2/4a;当a<0,且x=-b/2a时,函数y=ax^2+bx+c(a≠0)取得值,这个值等于4ac-b^2/4a。

6.抛物线y=ax^2+c(a≠0)的对称轴是y轴。

7.对于二次函数y=ax^2+bx+c(a≠0),若a,b同号,对称轴在y轴右侧a,b异号,对称轴在y轴左侧。

8.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。

9.对于抛物线y=a(x-m)^2+k,左右平移时,只与m有关,往左是加,往右是减;上下平移时,只与k有关,往上是加,往下是减。

初三数学反比例函数知识点

1.形如y=k/x(k≠0)或y=kx^-1的函数叫做反比例函数,k叫做反比例系数。它的图像是双曲线。^-1表示负一次。

2.在函数y=k/x(k≠0),当k>0时,表达式中的想x、y符号相同,点(x,y)在第一、三象限,所以函数y=k/x(k≠0)的图像位于第一、三象限;当k<0时,表达式中的想x、y符号相反,点(x,y)在第二、四象限,所以函数y=k/x(k≠0)的图像位于第二、四象限。

3.在y=k/x(k≠0)中,当k>0时,在第一象限内,y随着x的增大而减小;若y的值随着x的值的增大而增大,则k的取值范围是k<0。

4.设P(a,b)是反比例函数y=k/x(k≠0)上任意一点,则ab的值等于k。经过反比例函数上的任意一点P,分别向x轴、y轴作垂线段,则所成的矩形面积为k;过P点向x轴或y轴作垂线段,连接OP,则所成的三角形面积为k/2。

初三数学整式的乘法知识点

1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式。

2.单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序。

3.多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:初三重要的数学考点知识归纳

下一篇:返回列表