初三重要的数学考点知识归纳
初三重要的数学考点知识归纳大全
初三数学的学习是非常关键的,因为马上就要面临中考,数学又是所有科目中,比较有难度的。那么初三的数学考点是什么?下面是小编为大家整理的关于初三重要的数学考点知识归纳,欢迎大家来阅读。
初三相似三角形数学考点
1.如果两个数的比值与另两个数的比值相等,就说这四个数成比例。
2.如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。谁都不能为0。为0无意义。
3.一般的,如果三个数a,b,c满足比例式a:b=b:c,则b就叫做a,c的比例中项。(如果是线段的话,只能取正的,如果是数,正负都可以)。
4.黄金分割
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1)/2,取其前三位数字的近似值是0.618。
5.证明三角形相似的方法:
(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;
(2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;
(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;
(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
(5)对应角相等,对应边成比例的两个三角形叫做相似。
初三数学圆的必考知识点
(1)圆
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。
(2)圆的相关特点
1)径
连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。
直径所在的直线是圆的对称轴。在同一个圆中,圆的直径d=2r。
2)弦
连接圆上任意两点的线段叫做弦。在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
3)弧
圆上任意两点间的部分叫做圆弧,简称弧,以“⌒”表示。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。
在同圆或等圆中,能够互相重合的两条弧叫做等弧。
4)角
顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。
初三数学解一元二次方程考点
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
(1)直接开平方法:
用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m。
直接开平方法就是平方的逆运算。通常用根号表示其运算结果。
(2)配方法
通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)。
2)系数化1:将二次项系数化为1。
3)移项:将常数项移到等号右侧。
4)配方:等号左右两边同时加上一次项系数一半的平方。
5)变形:将等号左边的代数式写成完全平方形式。
6)开方:左右同时开平方。
7)求解:整理即可得到原方程的根。
(3)公式法
公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
初三数学常考有理数知识点
1、大于0的数叫做正数。
2、在正数前面加上负号“-”的数叫做负数。
3、整数和分数统称为有理数。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴。
5、在直线上任取一个点表示数0,这个点叫做原点。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则。
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
初三数学不等式与不等式组考点
不等式:
①用符号”=“号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。