最新五年级上册数学科目知识点模板
最新五年级上册数学科目知识点模板(8篇)
数学是其他学科的学习基础,五年级数学知识点对小朋友们的数学学习非常重要,大家一定要认真掌握。下面是小编给大家整理的最新五年级上册数学科目知识点模板,仅供参考希望能帮助到大家。
最新五年级上册数学科目知识点模板篇1
1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
2.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
3.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
4.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
5.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的'小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。
7.数的互化:
(1)小数化成分数
原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
(2)分数化成小数
用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
(3)化有限小数
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
(4)小数化成百分数
只要把小数点向右移动两位,同时在后面添上百分号。
(5)百分数化成小数
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
(6)分数化成百分数
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(7)百分数化成小数
先把百分数改写成分数,能约分的要约成最简分数。
8.小数的分类:
(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。
(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……
(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。
9.循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。
10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。
11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)
方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。
12.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。如果两个方程的解相同,那么这两个方程叫做同解方程。
13.方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
14.解方程:解方程,求方程的解的过程叫做解方程。
15.列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。
16.列方程解答应用题的步骤:
(1)弄清题意,确定未知数并用x表示;
(2)找出题中的数量之间的相等关系;
(3)列方程,解方程;
(4)检查或验算,写出答案。
17.列方程解应用题的方法:
(1)综合法
先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
(2)分析法
先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
18.列方程解应用题的范围:
小学范围内常用方程解的应用题:
(1)一般应用题;
(2)和倍、差倍问题;
(3)几何形体的周长、面积、体积计算;
(4)分数、百分数应用题;
(5)比和比例应用题。
19.平行四边形的面积公式:
底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah
20.三角形面积公式:
S△=1/2__ah(a是三角形的底,h是底所对应的高)
21.梯形面积公式:
(1)梯形的面积公式:(上底+下底)×高÷2.
用字母表示:(a+b)×h÷2
(2)另一计算公式:中位线×高
用字母表示:l·h
(3)对角线互相垂直的梯形:对角线×对角线÷2.
最新五年级上册数学科目知识点模板篇2
1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;
2.会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;
3.理解用字母表示数的意义和作用;
4.理解简易方程的意思及其解法;
5.在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
学习难点:
6.能正确进行乘号的简写,略写;小数乘法的计算法则;
7.小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足;
8.除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;
9.构建初步的空间想象力;
10.用字母表示数的意义和作用;
11.多边形面积的计算。
最新五年级上册数学科目知识点模板篇3
1、长方形面积=长×宽字母公式:s=ab
长方形周长=(长+宽)×2字母公式:c=(a+b)×2
2、正方形面积=边长×边长字母公式:s=或者s=a×a
正方形周长=边长×4字母公式:c=4a或者c= a×4
3、平行四边形面积=底×高字母公式:s=ah
4、三角形面积=底×高÷2字母公式:s=ah÷2
5、梯形面积=(上底+下底)×高÷2字母公式:s=(a+b)×h÷2
6、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2
7、等底等高的平行四边形面积相等。等底等高的三角形面积相等。
等底等高的三角形和平行四边形面积关系:三角形的面积是平行四边形面积的一半,平行四边形的面积是三角形面积的2倍。
8、组合图形:转化成已学的简单图形,通过加、减进行计算。
怎么样才能打好小学数学基础
第一,重视小学数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对小学数学概念的理解只是停留在表明,不去挖掘引申的含义,对数学概念的特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,小学学生缺乏对概念的理解。
还有一部分小学同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢?
第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么小学的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。
同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了小学数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果小学学生不会做到这一点那么久而久之,不会的数学题目还是不会。
小学分数数学知识点
1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、①分子相同,分母小的分数反而大,分母大的分数反而小。
②分母相同,分子大的分数就大,分子小的分数就小。
4、①相同分母的分数相加、减:分母不变,只和分子相加、减。
②1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数
最新五年级上册数学科目知识点模板篇4
1、用字母表运算定律。
加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)
乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)
乘法分配律:(a±b)×c=a×c±b×c
2、用字母表示计算公式。
长方形的周长公式:c=(a+b)×2长方形的面积公式:s=ab
正方形的周长公式:c=4a正方形的面积公式:s=
3、读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
4、①含有未知数的等式称为方程。
②使方程左右两边相等的未知数的值叫做方程的解。
③求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)×(时间)速度=(路程)÷(时间)时间=(路程)÷(速度)
总价=(单价)×(数量)单价=(总价)÷(数量)数量=(总价)÷(单价)
总产量=(单产量)×(数量)单产量=(总产量)÷(数量)
数量=(总产量)÷(单价)
工作总量=(工作效率)×(工作时间)
工作效率=(工作总量)÷(工作时间)
工作时间=(工作总量)÷(工作效率)
大数-小数=相差数大数-相差数=小数小数+相差数=大数
一倍量×倍数=几倍量几倍量÷倍数=一倍量
几倍量÷一倍量=倍数
被减数=减数+差减数=被减数-差加数=和-另一个加数
被除数=除数×商除数=被除数÷商因数=积÷另一个因数
小学数学四边形知识点
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
小学数学0的含义
1、没有任何东西
2、数轴的前点(原点)
3、可以表示分界
4、可以表示起点
5、可以起到占位作用
最新五年级上册数学科目知识点模板篇5
一、比较图形面积大小的方法:
1、数格法;
2、重叠法;
3、分割平移法;
4、公式计算面积法;
5、借助参照物比较法。
二、计算不规则图形面积的方法:
1、数格法;
2、分割法;
3、大面积减小面积法;
4、综合计算法
注:数格子时,先数完整的格子,再数能拼接的格子,如果几个格子可以拼接成一个完整的格子,就可以算作一个整格;不能拼接的格子,如果接近半格,按半格算;如果只多一点点的,可以忽略不计;如果超过半格,接近一格的,按一格计算。
三、底和高
1、底和高是互相垂直的两条垂线段。(画高时,用虚线画高)
2、画垂线时用实线画。
四、面积公式
1、平行四边形面积=底×高(s平=ah)
底=平行四边形面积÷高(a=s平÷h)
高=平行四边形面积÷底(h=s平÷a)
2、三角形面积=底×高÷2(s三=ah÷2)
底=三角形面积×2÷高(a=s三×2÷h)
高=三角形面积×2÷底(h=s三×2÷a)
3、梯形面积=(上底+下底)×高÷2(s梯=(a+b)h÷2)
上底=梯形面积×2÷高-下底(a=s梯×2÷h-b)
下底=梯形面积×2÷高-上底(b=s梯×2÷h-a)
高=梯形面积×2÷(上底+下底)(h=s梯×2÷(a+b))
最新五年级上册数学科目知识点模板篇6
统计与可能性
1、平均数=总数量÷总份数
2、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
五年级上册数学重点知识点
数学广角
1、数不仅可以用来表示数量和顺序,还可以用来编码。
2、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
054001
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
3、身份证码:18位
130521197803010019
河北省邢台市邢台县出生日期顺序码校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。
最新五年级上册数学科目知识点模板篇7
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
6、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6。3232…………的循环节是32。
7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
数学对折是什么意思
一条直线把一个平面图形分成两个全等的图形,其中的一个图形沿着这条直线翻折到另一个图形上面,则两部分完全重合,这个过程就叫做对折。对折仅为1次重合折叠,是折叠的一种。如把上衣对折,把纸对折。折叠可以是多次,也不一定折后重合,如多层折叠梯子。
生活中的对折
商场里“对折”指“五折”或“半价”;“半折”指“一折来的一半”,即“原价的分之五”。
“对折”是一种按“对半”形式折价的做法。“对半”,如同其字自面的意义,就像一张纸对折以后其面积只剩下原大的一半,该价格百也因对折而被降低一半。因此,如果一个书包原价是一百元,则其对折价格为五十元。
“半折”与“对折”是不同的概念。“半折”是“一折的一半”。这里的“折”指的是原价的“十分之一”,因此,“九折”就是“九个十分之一”,即原价的十知分之九,依此类推。因此道,上述书包九折的价格为九十元,三折的价格为三十元,一折价为十元,半折价为五元。
如何学好数学
通过联系对比进行辨析
在数学知识中有不少是由同一基本概念和方法引申出来的种属及其他相关知识,或看来相同,实质不同的知识,学习这类知识的主要方法,是用找联系、抓对比进行辨析。如直线、射线、线段这些概念,它们既有联系又有区别。
课后总结和反思
在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。
最新五年级上册数学科目知识点模板篇8
第一单元小数乘法
1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
如:1.5×3 表示 1.5 的 3 倍是多少或 3 个 1.5 的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中 一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。
如:1.5×0.8 就是求 1.5 的十分之八是多少。
1.5×1.8 就是求 1.5 的 1.8 倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的 0 要去掉,把小数化简;小数部分位数不够时,要用 0 占位。
3、规律(1)(P9):一个数(0 除外)乘大于 1 的数,积比原来的数大;
一个数(0 除外)乘小于 1 的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律: a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质: a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c 【(a-b)×c=a×c-b×c】
除法:除法性质: a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3 表示已知两个因数的积 0.6 与其中的一个因数 0.3,求另一个因数的运算。
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的.小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
10、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用 0 补足。
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数 求出商的近似数。
12、(P24、25)除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。 被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232…… ……的循环节是 32.
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
17、a×a 可以写作 a·a 或 a ,a 读作 a 的平方。 2a 表示 a+a
18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。、
20、 个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的检验过程:方程左边=……
23、方程的解是一个数;
解方程式一个计算过程。=方程右边
所以,X=…是方程的解。
第五单元多边形的面积
23、公式:
长方形:周长=(长+宽)×2--【长=周长÷2-宽;宽= 周长÷ 2-长】 字母公式:C=(a+b)×2
面积= 面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 --【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移
25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的面积等于三角形面积的 2 倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。
因为平行四边形面积= 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转
27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的 2 倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;
等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的 2 倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
30、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)
0 5 4 0 0 1
前 3 位表示邮区
前 4 位表示县(市)
最后 2 位表示投递局
35、身份证码: 18 位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。