北师版初中数学知识点总结
初中数学有多重要,估计不用多说,大家也很清楚,不仅是中考,甚至高考,数学的比重都是不容忽视的。以下是小编为大家带来的北师版初中数学知识点总结梳理,欢迎参阅呀!
北师版初中数学知识点总结梳理
数与代数
1.数与式
(1)实数
实数的性质:
①实数a的相反数是—a,实数a的倒数是(a≠0);
②实数a的____值:
③正数大于0,负数小于0,两个负实数,____值大的反而小。
二次根式:
①积与商的方根的运算性质:
(a≥0,b≥0);
(a≥0,b>0);
②二次根式的性质:
(2)整式与分式
①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m、n为正整数);
②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n为正整数,m>n);
③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n为正整数);
④零指数:(a≠0);
⑤负整数指数:(a≠0,n为正整数);
⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;
⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;
分式
①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即;,其中m是不等于零的代数式;
②分式的乘法法则:;
③分式的除法法则:;
④分式的乘方法则:(n为正整数);
⑤同分母分式加减法则:;
⑥异分母分式加减法则:;
2.方程与不等式
①一元二次方程(a≠0)的求根公式:
②一元二次方程根的判别式:叫做一元二次方程(a≠0)的根的判别式:
方程有两个不相等的实数根;
方程有两个相等的实数根;
方程没有实数根;
③一元二次方程根与系数的关系:设、是方程(a≠0)的两个根,那么+=,=;
不等式的基本性质:
①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;
3.函数
一次函数的图象:函数y=kx+b(k、b是常数,k≠0)的图象是过点(0,b)且与直线y=kx平行的一条直线;
一次函数的性质:设y=kx+b(k≠0),则当k>0时,y随x的增大而增大;当k<0,y随x的增大而减小;
正比例函数的图象:函数的图象是过原点及点(1,k)的一条直线。
正比例函数的性质:设,则:
①当k>0时,y随x的增大而增大;
②当k<0时,y随x的增大而减小;
反比例函数的图象:函数(k≠0)是双曲线;
反比例函数性质:设(k≠0),如果k>0,则当x>0时或x<0时,y分别随x的增大而减小;如果k<0,则当x>0时或x<0时,y分别随x的增大而增大;
二次函数的图象:函数的图象是对称轴平行于y轴的抛物线;
①开口方向:当a>0时,抛物线开口向上,当a<0时,抛物线开口向下;
②对称轴:直线;
③顶点坐标(;
④增减性:当a>0时,如果,则y随x的增大而减小,如果,则y随x的增大而增大;当a<0时,如果,则y随x的增大而增大,如果,则y随x的增大而减小;
二、空间与图形
1.图形的认识
(1)角
角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平分线上。
(2)相交线与平行线
同角或等角的补角相等,同角或等角的余角相等;
对顶角的性质:对顶角相等
垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
②直线外一点有与直线上各点连结的所有线段中,垂线段__短;
线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;
线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;
平行线的定义:在同一平面内不相交的两条直线叫做平行线;
平行线的判定:
①同位角相等,两直线平行;
②内错角相等,两直线平行;
③同旁内角互补,两直线平行;
平行线的特征:
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补;
平行公理:经过直线外一点有且只有一条直线平行于已知直线。
(3)三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;
三角形的三条角平分线交于一点(内心);
三角形的三边的垂直平分线交于一点(外心);
三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;
全等三角形的判定:
①边角边公理(SAS)
②角边角公理(ASA)
③角角边定理(AAS)
④边边边公理(SSS)
⑤斜边、直角边公理(HL)
等腰三角形的性质:
①等腰三角形的两个底角相等;
②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)
等腰三角形的判定:
有两个角相等的三角形是等腰三角形;
直角三角形的性质:
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);
④直角三角形中角所对的直角边等于斜边的一半;
直角三角形的判定:
①有两个角互余的三角形是直角三角形;
②如果三角形的三边长a、b、c有下面关系,那么这个三角形是直角三角形(勾股定理的逆定理)。
(4)四边形
多边形的内角和定理:n边形的内角和等于(n≥3,n是正整数);
平行四边形的性质:
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分;
平行四边形的判定:
①两组对角分别相等的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③对角线互相平分的四边形是平行四边形;
④一组对边平行且相等的四边形是平行四边形。
矩形的性质:(除具有平行四边形所有性质外)
①矩形的四个角都是直角;
②矩形的对角线相等;
矩形的判定:
①有三个角是直角的四边形是矩形;
②对角线相等的平行四边形是矩形;
菱形的特征:(除具有平行四边形所有性质外
①菱形的四边相等;
②菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;
菱形的判定:
四边相等的四边形是菱形;
正方形的特征:
①正方形的四边相等;
②正方形的四个角都是直角;
③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;
正方形的判定:
①有一个角是直角的菱形是正方形;
②有一组邻边相等的矩形是正方形。
等腰梯形的特征:
①等腰梯形同一底边上的两个内角相等
②等腰梯形的两条对角线相等。
等腰梯形的判定:
①同一底边上的两个内角相等的梯形是等腰梯形;
②两条对角线相等的梯形是等腰梯形。
平面图形的镶嵌:
任意一个三角形、四边形或正六边形可以镶嵌平面;
(5)圆
点与圆的位置关系(设圆的半径为r,点P到圆心O的距离为d):
①点P在圆上,则d=r,反之也成立;
②点P在圆内,则d
③点P在圆外,则d>r,反之也成立;
圆心角、弦和弧三者之间的关系:在同圆或等圆中,圆心角、弦和弧三者之间只要有一组相等,可以得到另外两组也相等;
圆的确定:不在一直线上的三个点确定一个圆;
垂径定理(及垂径定理的推论):垂直于弦的直径平分弦,并且平分弦所对的两条弧;
平行弦夹等弧:圆的两条平行弦所夹的弧相等;
圆心角定理:圆心角的度数等于它所对弧的度数;
圆心角、弧、弦、弦心距之间的关系定理及推论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等;
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量分别相等;
圆周角定理:圆周角的度数等于它所对的弧的度数的一半;
圆周角定理的推论:直径所对的圆周角是直角,反过来,的圆周角所对的弦是直径;
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;
切线的性质定理:圆的切线垂直于过切点的半径;
切线长定理:从圆外一点引圆的两条切线,这一点到两切点的线段相等,它与圆心的连线平分两切线的夹角;
弧长计算公式:(R为圆的半径,n是弧所对的圆心角的度数,为弧长)
扇形面积:或(R为半径,n是扇形所对的圆心角的度数,为扇形的弧长)
弓形面积
学霸分享的数学复习技巧
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了.
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
数学解题方法分别有哪些
1、配方法
所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。
2、因式分解法
因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。
3、换元法
替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。
4、判别式法与韦达定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。
韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。
5、待定系数法
在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。
数学经常遇到的问题解答
1、要提高数学成绩首先要做什么?
这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。
2、基础不好怎么学好数学?
对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。
3、是否要采用题海战术?
方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。
4、做题总是粗心怎么办?
很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。
为什么要学习数学
作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。
首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。
其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。
除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。
最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。