首页 > 学习资料 > 学科资料 > 数学 >

八年级数学函数知识点

稚念分享 404701

稚念 分享

数学是一门探索性的学科,培养我们的探索精神和好奇心。尝试不同的方法、思考不同的角度,解决数学问题会给我们带来乐趣和充实感。以下是小编为大家带来的八年级数学函数知识点考点,欢迎参阅呀!

八年级数学函数知识点

八年级数学函数知识点考点

知识点1 一次函数和正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.

知识点2 函数的图象

由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点.

画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.

知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质

(1)k的正负决定直线的倾斜方向;

①k>0时,y的值随x值的增大而增大;

②k﹤O时,y的值随x值的增大而减小.

(2)|k|大小决定直线的倾斜程度,即|k|越大

①当b>0时,直线与y轴交于正半轴上;

②当b<0时,直线与y轴交于负半轴上;

③当b=0时,直线经过原点,是正比例函数.

(4)由于k,b的符号不同,直线所经过的象限也不同;

①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);

②如图所示,当k>0,b

③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);

④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).

(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.

知识点4 正比例函数y=kx(k≠0)的性质

(1)正比例函数y=kx的图象必经过原点;

(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;

(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.

知识点5 点P(x0,y0)与直线y=kx+b的图象的关系

(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;

(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.

例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.

知识点6 确定正比例函数及一次函数表达式的条件

(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.

(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.

知识点7 待定系数法

先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.

知识点8 用待定系数法 确定一次函数表达式一般步骤

(1)设函数表达式为y=kx+b;

(2)将已知点的坐标代入函数表达式,解方程(组);

(3)求出k与b的值,得到函数表达式.

思想方法小结 (1)函数方法.(2)数形结合法.

知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响.

①当b>0时,直线与y轴的正半轴相交;

当b=0时,直线经过原点;

当b﹤0时,直线与y轴的负半轴相交.

②当k,b异号时,直线与x轴正半轴相交;

当b=0时,直线经过原点;

当k,b同号时,直线与x轴负半轴相交.

③当k>O,b>O时,图象经过第一、二、三象限;

当k>0,b=0时,图象经过第一、三象限;

中考数学关于“函数”的知识点

(1)关系式为整式时,函数定义域为全体实数;

(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;

(4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

用待定系数法确定函数解析式的一般步骤

(1)根据已知条件写出含有待定系数的函数关系式;

(2)将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。、一次函数的定义

一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

初中数学复习方法大全

1.重点练习几种类型的题目

不要钻偏题、怪题、过难题的牛角尖,根据平时做套卷时的感受,多练习以下几个类型的题目。

(1)初看没有思路,但分析后能顺利做出的。通过对这类问题的练习,能够使我们对题目的考点和重点更熟悉,提高建立思路的速度和切入点的准确度,让我们能在考试中留出更多时间来处理后面难度高、阅读量大的综合题。

(2)自己经常出错的中档题。中档题在中考中每年的考查内容都差不多,题目位置也相对固定,属于解决了一个板块就能得到相应版块分数的类型。在中档题的某个题型经常出错说明对这部分内容的基本概念和常用方法理解不到位。通过练习,多总结这类题目的解题思路和技巧,把不稳定的得分变成到手的分数。中档题难度一般不会太高,所以对于自己薄弱的中档题进行突击练习一般都会有很好的效果。

(3)基础相对薄弱的同学也应该做一些常考的题目类型。比如圆的切线的判定以及与圆相关的线段计算、一次函数和反比例函数的综合、二元一次方程整数根问题等,通过练习,进一步提高我们解决这些问题的熟练度

2.学会看错题的正确方式

大部分学生都有错题本,在复习时看错题本,巩固自己的错误是不错的复习方式,但在看错题时一定要杜绝连题目带答案一起顺着看下来的方式。尽量能够将答案挡住,自己再尝试做一遍,如果做的过程中遇到问题再去看答案,并做好标注,过两天再试做一遍,争取能在期末考试前将之前的错题整体过两到三遍、加深印象。

3.认真研究每道题目的考点

做题时,我们心中要对相应题目所对应的考点有所了解,比如填空题中如果出现几何问题,主要是对图形基本性质和面积的考察,而很少考到全等三角形的证明(尺规作图写依据除外),所以我们在填空题中看到几何问题,就不用从全等方面找突破口,而是更多地注重图形的基本性质。比如平行四边形对角线互相平分、等腰三角形三线合一等。

4.尽量避免只看不算

很多同学在复习时不喜欢动笔,觉得自己看明白了就行,但俗话说“眼过千遍不如手过一遍”,不去实际操作只是看一遍题目,对题目解法和思路的印象其实是很低的。而且在计算过程中还能锻炼我们的计算能力,提高解题速度和准确性。许多同学在写证明题时很不熟练,逻辑不顺畅,也是由于平时对书写的不重视,应该趁着期末考试前的时间,多练练书写。

学好初中数学要重视“四个依据”

读好一本教科书——它是教学、中考的主要依据;

记好一本笔记 ——它是教师多年经验的结晶;

做好一本习题集——它是知识的拓宽;

记好一本心得笔记——它是你自己的知识。

提高数学学习的七大能力

1.运算能力,否则每次考试大题第一题你就开始错!

2.空间想象能力,否则几何题会让你痛不欲生!

3.逻辑思维能力,否则以后的证明题和推导题会让你生不如死!

4.将实际问题抽象为数学问题的能力,不然应用题会让你虽死犹生!

5.形数结合互相转化的能力。这考试每次考试的压轴题哦!

6.观察、实验、比较、猜想、归纳问题的能力。不然每次选择或者填空题的最后一题找规律会让你内流满面!

7.研究、探讨问题的能力和创新能力。不然每次的附加题咱们就不用看了!

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:八年级下册数学知识点

下一篇:返回列表