首页 > 学习资料 > 学科资料 > 数学 >

2024年职高数学知识点

拾心分享 376996

拾心 分享

在平日的学习中,大家最不陌生的就是知识点吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。以下是小编为大家带来的2024年职高数学知识点整理,欢迎参阅呀!

2024年职高数学知识点

2024年职高数学知识点整理

空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp.空间向量法

两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;

(2)没有公共点——平行或异面

直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性;

2.元素的互异性;

3.元素的无序性.

3、集合的表示:

(1){?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4

4.集合的表示方法:列举法与描述法。

常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N__或N+整数集Z有理数集Q实数集R

5.关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表

示某些对象是否属于这个集合的方法。

6、集合的分类:

(1).有限集含有有限个元素的集合

(2).无限集含有无限个元素的集合

(3).空集不含任何元素的集合例:{x|x2=-5}=Φ

集合间的基本关系

1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,记作A?

2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。即A?A

②如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

A∪φ=A,A∪B=B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即A?S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,看作一个全集。通常用U来表示。

(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函数的有关概念合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

1.能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不可以等于零

(7)实际问题中的函数的定义域还要保证实际问题有意义.

2.构成函数的三要素:定义域、对应关系和值域

再注意:

(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:

①表达式相同;

②定义域一致(两点必须同时具备)

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的数轴表示.

4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应

①集合A、B及对应法则f是确定的;

②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;

③对于映射f:A→B来说,则应满足:

(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;

(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

5.常用的函数表示法:解析法:图象法:列表法:

6.分段函数在定义域的不同部分上有不同的解析表达式的函数。

(1)分段函数是一个函数,不要把它误认为是几个函数;

(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

7.函数单调性

(1).设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A)定义法:○1任取x1,x2∈D,且x1

(B)图象法(从图象上看升降)_注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性

(1)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,○

则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)。

补充不等式的解法与二次函数(方程)的性质

如何养成良好的数学学习习惯

制定计划,成为习惯

无论是学习哪一科,明确的目标计划都是最基本的方法,也是要被大家说烂了的提高成绩的基本。

数学也是一样,虽然公式多,定义多,图形多,但完全不影响制定数学的学习计划。学习是一个长久性的打算,因此在制定数学学习内容的过程中可以尽量的详细一点。

比如说每天做多少道题,掌握多少个公式,记住几个定义等等。这样才是学好高中数学应该做的步骤。

其次就是每天按照自己给自己的规定去做,不要想着偷懒,今天不爱做就留给明天,想着明天多做点补回来。

这种想法是非常错误的,今天的任务就要今天完成,想着自己为了提高数学成绩,无论如何都要努力。

预习与复习相结合

预习帮助大家在数学课上对知识有一个大概的了解,也对老师要讲的内容有个先知,不至于惊讶惊讶老师接下来要讲什么。

而复习就是对这一堂课的数学学习进行一个验收和反馈,检验自己是否学会数学老师讲的内容;反馈自己的学习成效,及时找到自己数学学习的问题以便及时解决。

这样在学习新的数学知识的时候就不会带着之前留下来的疑问了。这对于学好高中数学,提高数学成绩非常有帮助。

高质量的完成作业

作业是一个很好查缺补漏的过程,因此同学们想要学好数学,就一定要认真完成作业。不要依赖不会就空着等数学老师上课讲这样的想法,这样只会退步。

数学学习就是要不断的动脑解决问题,所以作业要完成,还要高质量的去完成,这样才能不断提高自己的能力。

不要空太多的题不写,就只等着老师公布正确答案和解题过程,这样一来,需要自己消化的数学问题就因为自己的懒惰变得越来越多,以至于影响之后的学习效率。

数学最常用且非常实用的学习方法

1、预习很重要:

往往被忽略,理由:没时间,看不懂,不必要等。预习是学习的必要过程,还是提高自学能力的好方法。

2、听讲有学问:

听分析、听思路、听应用,关键内容一字不漏,注意记录。

3、做好错题本:

每个会学习的学生都会有。最好再加个“好题本”。发现许多同学没有错题本,或者是只做不用。这样学习效果都不好。

4、用好课外书:

正确认识网络课程和课外书籍,是副食,是帮助吸收的良药,绝对不是课堂学习的替代品。

5、注意总结和反思:

知识点、解题方法和技巧、经验和教训。

6、接受数学思想方法的指导:

要注意数学思想和方法的指导,站得高,才能看得远。

关于数学常见误区有哪些

1、被动学习

许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。

2、学不得法

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、不重视基础

一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

4、进一步学习条件不具备

高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。

如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:新学期知识点初中数学

下一篇:返回列表