首页 > 学习资料 > 学科资料 > 数学 >

四年级上册数学第一单元知识点

以南分享 376627

以南 分享

在经济和金融领域,数学用于建立决策和预测的基础,对理解和应对现代经济体系中的挑战至关重要!以下是小编为大家带来的有关四年级上册数学第一单元知识点,欢迎参阅呀!

四年级上册数学第一单元知识点

有关四年级上册数学第一单元知识点

第一单元《认识更大的数》

数一数

知识点:

1、认识数级、数位、计数单位,并了解它们之间的对应关系。

数级……亿级万级个级

数位……千亿位百亿位十亿位亿

计数单位……千亿百亿十亿亿千万百万十万万千百十个

2、十进制计数法。相邻两个计数单位之间的进率是十,也就是十进制关系。

3、数数。能一万一万地数,十万十万地数,一百万一百万地数……

人口普查(亿以内数的读法、写法)

知识点:

1、 亿以内数的读数方法。

含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在每级末尾的零不读,在每级中间的零必须读。中间不管有几个零,只读一个零。

2、 亿以内数的写数方法。

从高位写起,按照数位的顺序写,中间或末尾哪一位上一个也没有,就在那一位上写0。

3、 比较数大小的方法。

多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。

国土面积(多位数的改写)

知识点:

1、 改写以“万”或“亿”为单位的数的方法。

以“万”为单位,就要把末尾的四个0去掉,再添上万字;以“亿”为单位,就要把末尾八个0去掉,再添上亿字。

2、 改写的意义。为了读数、写数方便。

森林面积(求近似数)

知识点:

1、 精确数与近似数的特点。

精确数一般都以“一”为单位,近似数都是省略尾数,以“万”或“亿”为单位。

2、 用四舍五入法保留近似数的方法。

根据题中要求,看到所要保留位数的下一位,如果这一位满5,则向前一位进一;如果不够5则舍去。而不管尾数的后几位是多少。如精确到万位,只看千位,精确到亿位,只看到千万位。最后一定要写出单位名称。

第二单元《线与角》

线的认识

知识点:

1、 认识直线、线段与射线,会用字母正确读出直线、线段和射线。

直线:可以向两端无限延伸;没有端点。读作 :直线AB或直线BA。

线段:不能向两端无限延伸;有两个端点。读作:线段AB或线段BA。

射线:可以向一端无限延伸;有一个端点。读作:射线AB(只有一种读法,从端点读起。)

补充知识点:

1、 画直线。

过一点可画无数条直线;过两个能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。

2、 明确两点之间的距离,线段比曲线、折线要短。

3、 直线、射线可以无限延长。因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体的长度。如:直线长4厘米。是错误的。只有线段才能有具体的长度。

平移与平行

知识点:

1、感受平移前后的位置关系———平行。(在同一平面内,永不相交的两条直线叫做平行线。)

2、平行线的画法。

(1)固定三角尺,沿一条直角边先画一条直线。

(2)用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺。

(3)沿一条直角边在画出另一条直线。

3、能够借助实物,平面图形或立体图形,寻找出图中的平行线。

补充知识点 :用数学符号表示两条直线的平行关系。如:AB∥CD。

相交与垂直

知识点:

1、 相交与垂直的概念。当两条直线相交成直角时,这两条直线互相垂直。(互相垂直:就是直线OA垂直于直线OB,直线OB垂直于直线OA)这两条直线的交点叫做垂足。(两条直线互相垂直说明了这两条直线的位置关系:必须相交,相交还要成直角。)

2、 画垂线:

(1)过直线上一点画垂线的方法。

把三角尺的一条直角边与这条直线重合,直角顶点是垂足,沿着另一条直角边画直线,这条直线是前一条直线的垂线。注意,要让三角尺的直角顶点与给定的点重合。

(2)过直线外一点画垂线的方法。

把三角尺的一条直角边与这条直线重合,让三角尺的另一条直角边通过这个已知点,沿着三角尺的另一条直角边画直线,这条直线就是前一条直线的垂线。注意,画图时一般左手持三角尺,右手画线。过直线外一点画一条直线的垂线,三角尺的另一条直角边必须通过给定的这个点。

补充知识点:

1、 会用数学符号表示两条直线互相垂直的关系。如:OA⊥OB。

2、 明确点到直线之间垂线段最短。

旋转与角

知识点:

1、 角的概念。由一点引出两条射线所组成的图形叫做角。角是由一个顶点和两条边组成的。

2、 认识平角、周角。

平角 :角的两边在同一直线上,(像一条直线),平角等于180°,等于两个直角。

周角:角的两边重合,(像一条射线),周角等于360°,等于两个平角,四个直角。

3、 角的分类:小于90度的角叫做锐角;等于90度的角叫做直角;大于90度小于180度的角叫做钝角;等于180度的角叫做平角;大于180度小于270度叫做优角(此为补充内容);等于360度的角叫做周角。

4、 动手画平角、周角。

角的度量

知识点:

1、 认识度。将圆平均分成360份,把其中的1份所对的角叫做1度,记作1°,通常用1°作为度量角的单位。

2、 认识量角器。量角器是把半圆平均分成180份,一份表示1度。量角器上有中心点、0刻度线、内刻度线、外刻度线。

3、 量角器的使用方法。“两合一看”,“两合”是指中心点与角的顶点重合;0刻度线与角的一边重合。“一看”就是要看角的另一边所对的量角器的刻度。

4、 看角的度数时要注意是看外刻度还是内刻度。角的开口向左看外刻度线,角的开口向右看内刻度线。

画角

知识点:

1、 用量角器画指定度数的角的方法。

画一条射线,中心点对准射线的端点,0刻度线对准射线(两合),对准量角器相应的刻度点一个点(一看),把点和射线端点连接,然后标出角的度数。

2、30度、60度、90度、45度、75度、105度、135度、120度和150度用三角板比较方便。

第三单元《乘法》

卫星运行 (三位数乘两位数)

知识点:

1、 估算方法。用四舍五入法进行估算。

2、 利用竖式计算三位数乘两位数。注意,第二个因数的十位要乘三遍,第二步的乘积末尾写在十位上。

补充知识点

1、 时、分、日之间的单位互化。

1时=60分 1日=24时

2、 因数中间或末尾有0的三位数乘两位数。

中间有0也要和因数分别相乘;末尾有0的,要将两个因数0前面数的末位对齐,用0前面的数相乘,乘完之后在落0,有几个0落几个0。

体育场(实际生活中的估算)

知识点:

估算的方法及注意事项:要将因数估成整十、整百或整千的数。估算时注意,要符合实际,接近精确值。

神奇的计算工具

知识点:

1、 在学生原有基础上进一步认识并会使用计算器。

2、 利用“M+”存储键,“MR”提取键,计算四则运算的题目。

3、 了解计算机中使用的是二进制计数法,就是满2进1。

补充知识点:了解两个因数越接近(即差越小),积越大,两个因数相等时,积是的;两个因数的差越大,积越小。

探索与发现(-)(有趣的算式)

知识点:

第一组算式:积的位数是两个因数位数之和-1,积的位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)

第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)

第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。

第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。

探索与发现(二)(乘法结合律)

知识点:

1、 乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。用字母表示是:(a×b)×c=a×(b×c).

2、 使用时机:当几个数相乘时,如果其中两个数相乘得整十、整百、整千的数就可以应用乘法交换律和乘法结合律。乘法结合律可以改变乘法运算中的顺序。数字如;25和4、50和2、125和8、50和4、500和2等。

探索与发现(三)(乘法分配律)

知识点:

1、 乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,再把两个积相加(或相减),结果不变。用字母表示数:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c

补充知识点:

1、 式子的特点:式子的运算符号一般是×、+(-)、×的形式;在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)基本上是能凑成整十、整百、整千的数。

2、 102×88、99×15这类题的特点:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成整十、整百、整千与一个数的和(或差),再应用乘法分配律可以使运算简便。

第四单元 《图形的变换》

知识点:

1、 绕中心点旋转的方向:顺时针,即顺着钟表时针走的方向,从上往右走,再往下,最后向上。 逆时针,和顺时针的方向相反,从上往左走,再往下,最后向上。

2、 对照方格纸能准确的说出图形的平移或旋转的变化过程。

3、 体会一个简单图形经过平移或旋转制作复杂图形的过程,并能进行简单的制作。如利用一个三角形,通过旋转和平移制作出不同的复杂图形。

怎样快速提高数学成绩?

一、查缺补漏,主攻薄弱

请制作“失分分析表”,包括“不会做的”和“不该丢分的”两部分,分析模拟考试等试卷失分情况,在紧跟老师复习的基础上,针对自己的薄弱环节重点弥补、改进。

别一味冲刺难题。做题是对理论知识的进一步巩固与实检,我们要在理解的基础上加强练习,以达到巩固的目的,但不能一味追求难题偏题。

因为中考试卷中有30%是比较灵活的题型,只有10%是真正的难题。30%那部分题目是我们能拿但容易失分的题目,我们要做到尽量多拿分,但如果我们一味求难求险,就会因为忽视基础题型的夯实和巩固而失掉这部分该得的分。在基础掌握后,有条件的同学可再进行一些难题怪题的攻关,这样的策略才更能保证效率。

二、反思错题

不要盲目找题做,陷入题海中,不要“就题论题”停留在“这题我会了”的低水平上。解题能力是在反思中提升的。懂、会、悟是数学水平的三个层次。简单说,听懂了,但不一定会,更不意味着真正领悟了。

三、克服无谓失分

如何避免审题出错?

原因:看太快。

应对策略:

1.默读法;2.重点字词圈点勾画法;3.审图法。

如何降低计算失误?

表面原因是粗心,其实是计算能力不足。平时对计算不以为然,认为“没有技术含量”。事实上计算也有很多“聪明算法”,如:边化简边计算、宁加勿减、宁乘勿除、小数化分数、找最小最短的设元、放缩法、凑整法、图象法等等计算技巧。

应对策略:

1.不要为了赶时间而跳步计算;

2.宁可笔算,少用口算,更不要再抱着计算器;

3.对平时易算错的题型,可以验算一遍。

四、关注几个重点问题

1.新定义题型、非常规题型、存在性问题。

2.分析法—执果索因,逆向思维,倒过来想,假设存在;不完全归纳法—根据例子,大胆猜想、努力验证。反例排除法、特殊图形(特殊位置、极端值)探究法等。

提高数学成绩常用方法有哪些

1、预习

预期常常由于 “没时间,看不懂,不必要”等等原因被忽略。实际上预习是学习的必要过程,更是提高自学能力的好方法。

2、学会听课

听分析、听思路、听应用,关键内容一字不漏,注意记录。

3、做好错题本

每个会学习的学生都会有错题本。调查发现那些没有错题本,或者是只做不用的同学,学习效果都不好。

4、用好课外书

正确认识网络课程和课外书籍,是副食,是帮助吸收的良药。

5、注重数学思维方法的培养

要注意数学思想和方法的指导,站得高,才能看得远。

如何让数学学科预习变得更高效

一、读一读。预习时要认真,要逐字逐词逐句的阅读,用笔把重点画出来,重点加以理解.遇到自己解决不了的问题,作出记号,教师讲解时作为听课的重点.

二、想一想。对预习中感到困难的问题要先思考.如果是基础问题,可以用以前的知识看看能不能弄通.如果是理解上的问题,可以记下来课上认真听讲,通过积极思考去解决.这样有利于提高对知识的理解,养成学习数学的良好思维习惯。

三、说一说。预习时可能感到认识模糊,可以与父母或同学进行讨论,在同学们的合作交流与探讨中找到正确的答案.这样即增加了学生探求新课的兴趣,有可以弄懂数学知识的实际用法,对知识有个准确的概念。

四、写一写。写一写在课前预习中也是很有必要的,预习时要适当做学习笔记,主要包括看书时的初步体会和心得,读明白了的问题的理解,对疑难问题的记录和思考等。

五、做一做。预习应用题,可以用画线段的方法帮助理解数量间的关系,弄清已知条件和所求问题,找到解题的思路.对于一些有关图形方面的问题,可以在预习中动手操作,剪剪拼拼,增加感性认识。

六、补一补。数学课新旧知识间往往存在紧密的联系,预习时如发现学习过的要领有不清楚的地方,一定要在预习时弄明白,并对旧的知识加以巩固和记忆,同时为学习新的知识打下坚实的基础。

七、练一练。往往每课时的例题都是很典型的,预习时应把例题都做一遍,加深领悟的能力.如果做题时出现错误,要想想错在哪,为什么错,怎么改错.如果仍是找不到错误的根源,可在听课时重点听,逐步领会。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:中考数学知识点梳理

下一篇:返回列表