首页 > 学习资料 > 学科资料 > 数学 >

解一元二次方程练习题100道

顾忌分享 365709

顾忌 分享

解一元二次方程练习题100道(带答案)

一元二次方程是一个二次方程,它的一般形式为ax²+bx+c=0,其中a、b、c是系数,且a≠0。通过解这个方程,我们可以找到一个未知数的值。以下是小编为大家收集的关于一元二次方程计算题100道的相关内容,供大家参考!

解一元二次方程练习题100道

解一元二次方程练习题100道

(1)x^2-9x+8=0 答案:x1=8 x2=1

(2)x^2+6x-27=0 答案:x1=3 x2=-9

(3)x^2-2x-80=0 答案:x1=-8 x2=10

(4)x^2+10x-200=0 答案:x1=-20 x2=10

(5)x^2-20x+96=0 答案:x1=12 x2=8

(6)x^2+23x+76=0 答案:x1=-19 x2=-4

(7)x^2-25x+154=0 答案:x1=14 x2=11

(8)x^2-12x-108=0 答案:x1=-6 x2=18

(9)x^2+4x-252=0 答案:x1=14 x2=-18

(10)x^2-11x-102=0 答案:x1=17 x2=-6

(11)x^2+15x-54=0 答案:x1=-18 x2=3

(12)x^2+11x+18=0 答案:x1=-2 x2=-9

(13)x^2-9x+20=0 答案:x1=4 x2=5

(14)x^2+19x+90=0 答案:x1=-10 x2=-9

(15)x^2-25x+156=0 答案:x1=13 x2=12

(16)x^2-22x+57=0 答案:x1=3 x2=19

(17)x^2-5x-176=0 答案:x1=16 x2=-11

(18)x^2-26x+133=0 答案:x1=7 x2=19

(19)x^2+10x-11=0 答案:x1=-11 x2=1

(20)x^2-3x-304=0 答案:x1=-16 x2=19

(21)x^2+13x-140=0 答案:x1=7 x2=-20

(22)x^2+13x-48=0 答案:x1=3 x2=-16

(23)x^2+5x-176=0 答案:x1=-16 x2=11

(24)x^2+28x+171=0 答案:x1=-9 x2=-19

(25)x^2+14x+45=0 答案:x1=-9 x2=-5

(26)x^2-9x-136=0 答案:x1=-8 x2=17

(27)x^2-15x-76=0 答案:x1=19 x2=-4

(28)x^2+23x+126=0 答案:x1=-9 x2=-14

(29)x^2+9x-70=0 答案:x1=-14 x2=5

(30)x^2-1x-56=0 答案:x1=8 x2=-7

(31)x^2+7x-60=0 答案:x1=5 x2=-12

(32)x^2+10x-39=0 答案:x1=-13 x2=3

(33)x^2+19x+34=0 答案:x1=-17 x2=-2

(34)x^2-6x-160=0 答案:x1=16 x2=-10

(35)x^2-6x-55=0 答案:x1=11 x2=-5

(36)x^2-7x-144=0 答案:x1=-9 x2=16

(37)x^2+20x+51=0 答案:x1=-3 x2=-17

(38)x^2-9x+14=0 答案:x1=2 x2=7

(39)x^2-29x+208=0 答案:x1=16 x2=13

(40)x^2+19x-20=0 答案:x1=-20 x2=1

(41)x^2-13x-48=0 答案:x1=16 x2=-3

(42)x^2+10x+24=0 答案:x1=-6 x2=-4

(43)x^2+28x+180=0 答案:x1=-10 x2=-18

(44)x^2-8x-209=0 答案:x1=-11 x2=19

(45)x^2+23x+90=0 答案:x1=-18 x2=-5

(46)x^2+7x+6=0 答案:x1=-6 x2=-1

(47)x^2+16x+28=0 答案:x1=-14 x2=-2

(48)x^2+5x-50=0 答案:x1=-10 x2=5

(49)x^2+13x-14=0 答案:x1=1 x2=-14

(50)x^2-23x+102=0 答案:x1=17 x2=6

(51)x^2+5x-176=0 答案:x1=-16 x2=11

(52)x^2-8x-20=0 答案:x1=-2 x2=10

(53)x^2-16x+39=0 答案:x1=3 x2=13

(54)x^2+32x+240=0 答案:x1=-20 x2=-12

(55)x^2+34x+288=0 答案:x1=-18 x2=-16

(56)x^2+22x+105=0 答案:x1=-7 x2=-15

(57)x^2+19x-20=0 答案:x1=-20 x2=1

(58)x^2-7x+6=0 答案:x1=6 x2=1

(59)x^2+4x-221=0 答案:x1=13 x2=-17

(60)x^2+6x-91=0 答案:x1=-13 x2=7

(61)x^2+8x+12=0 答案:x1=-2 x2=-6

(62)x^2+7x-120=0 答案:x1=-15 x2=8

(63)x^2-18x+17=0 答案:x1=17 x2=1

(64)x^2+7x-170=0 答案:x1=-17 x2=10

(65)x^2+6x+8=0 答案:x1=-4 x2=-2

(66)x^2+13x+12=0 答案:x1=-1 x2=-12

(67)x^2+24x+119=0 答案:x1=-7 x2=-17

(68)x^2+11x-42=0 答案:x1=3 x2=-14

(69)x^20x-289=0 答案:x1=17 x2=-17

(70)x^2+13x+30=0 答案:x1=-3 x2=-10

(71)x^2-24x+140=0 答案:x1=14 x2=10

(72)x^2+4x-60=0 答案:x1=-10 x2=6

(73)x^2+27x+170=0 答案:x1=-10 x2=-17

(74)x^2+27x+152=0 答案:x1=-19 x2=-8

(75)x^2-2x-99=0 答案:x1=11 x2=-9

(76)x^2+12x+11=0 答案:x1=-11 x2=-1

(77)x^2+17x+70=0 答案:x1=-10 x2=-7

(78)x^2+20x+19=0 答案:x1=-19 x2=-1

(79)x^2-2x-168=0 答案:x1=-12 x2=14

(80)x^2-13x+30=0 答案:x1=3 x2=10

(81)x^2-10x-119=0 答案:x1=17 x2=-7

(82)x^2+16x-17=0 答案:x1=1 x2=-17

(83)x^2-1x-20=0 答案:x1=5 x2=-4

(84)x^2-2x-288=0 答案:x1=18 x2=-16

(85)x^2-20x+64=0 答案:x1=16 x2=4

(86)x^2+22x+105=0 答案:x1=-7 x2=-15

(87)x^2+13x+12=0 答案:x1=-1 x2=-12

(88)x^2-4x-285=0 答案:x1=19 x2=-15

(89)x^2+26x+133=0 答案:x1=-19 x2=-7

(90)x^2-17x+16=0 答案:x1=1 x2=16

(91)x^2+3x-4=0 答案:x1=1 x2=-4

(92)x^2-14x+48=0 答案:x1=6 x2=8

(93)x^2-12x-133=0 答案:x1=19 x2=-7

(94)x^2+5x+4=0 答案:x1=-1 x2=-4

(95)x^2+6x-91=0 答案:x1=7 x2=-13

(96)x^2+3x-4=0 答案:x1=-4 x2=1

(97)x^2-13x+12=0 答案:x1=12 x2=1

(98)x^2+7x-44=0 答案:x1=-11 x2=4

(99)x^2-6x-7=0 答案:x1=-1 x2=7

(100)x^2-9x-90=0 答案:x1=15 x2=-6

(101)x^2+17x+72=0 答案:x1=-8 x2=-9

关于一元二次方程

一元二次方程概念通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。

在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于一个已给数.可见巴比伦人已知道一元二次方程并知道了求根公式。但他们当时并不接受负数,所以负根是略而不提的。

埃及的纸草文书中也涉及到最简单的二次方程,在公元前4、5世纪时,古中国也已掌握了一元二次方程的求根公式。希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。

公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程二次项系数为一的一个求根公式。在阿拉伯阿尔。花拉子米的《代数学》中讨论到方程的解法,解出了一次、次方程,其中涉及到六种不同的形式,令a、b、c为正数。把二次方程分成不同形式作讨论,是依照丢番图的做法。

阿尔花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数学家们为了解三次方程而开始应用复数根。

韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。我国《九章算术,勾股》章中的第二十题是通过求相当于的正根而解决的。国数学家还在方程的研究中应用了内插法。

一元二次方程公式

一元二次方程的公式是:x=−b±b2−4ac2a(b2−4ac≥0)。

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。

其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

一元二次方程的特点

1、含有一个未知数。

2、且未知数次数最高次数是2。

3、一元二次方程是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。

4、将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:2023小学数学人教版三年级下册期末试卷含答案

下一篇:返回列表