首页 > 学习资料 > 学科资料 > 数学 >

7年级上册数学知识点

白瓷分享 364559

白瓷 分享

7年级上册数学知识点整理

学习是快乐的,学习是幸福的,虽然在学习的道路上我们会遇到许多困难,但是只要努力解决这些困难后,你将会感觉到无比的轻松与快乐,以下是小编为大家带来的7年级上册数学知识点整理,欢迎参阅呀!

7年级上册数学知识点

7年级上册数学知识点整理

平方根:

①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:

①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:

①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

数轴

1.数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:

⑴数轴是一条向两端无限延伸的直线;

⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;

⑶同一数轴上的单位长度要统一;

⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的'点不是一一对应关系。(如,数轴上的点π不是有理数)

3.利用数轴表示两数大小

⑴在数轴上数的大小比较,右边的数总比左边的数大;

⑵正数都大于0,负数都小于0,正数大于负数;

⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的(小)数

⑴最小的自然数是0,无的自然数;

⑵最小的正整数是1,无的正整数;

⑶的负整数是-1,无最小的负整数

5.a可以表示什么数

⑴a>0表示a是正数;反之,a是正数,则a>0;

⑵a<0表示a是负数;反之,a是负数,则a<0

⑶a=0表示a是0;反之,a是0,则a=0

(一)单项式与单项式相乘

1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,注意符号。

3、相同字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘

1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数相同。

4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘

1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的`每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

相反数

1.相反数

只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:

⑴相反数是成对出现的;

⑵相反数只有符号不同,若一个为正,则另一个为负;

⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定

⑴任何数都有相反数,且只有一个;

⑵0的相反数是0;

⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

3.相反数的几何意义

在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。

4.相反数的求法

⑴求一个数的相反数,只要在它的'前面添上负号“-”即可求得(如:5的相反数是-5);

⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);

⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)

5.相反数的表示方法

一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。

当a>0时,-a<0(正数的相反数是负数)

当a<0时,-a>0(负数的相反数是正数)

当a=0时,-a=0,(0的相反数是0)

初一数学知识点上册总结

点的坐标的性质:

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

因式分解的一般步骤:

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的`多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

因式分解:

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式。②结果必须是积的形式。③结果是等式。④因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项公约数。②相同字母取最低次幂。③系数公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式。③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母。

②不准丢常数项注意查项数。

③双重括号化成单括号。

④结果按数单字母单项式多项式顺序排列。

⑤相同因式写成幂的形式。

⑥首项负号放括号外。

⑦括号内同类项合并。

养成良好的数学学习习惯

制定计划,成为习惯

无论是学习哪一科,明确的目标计划都是最基本的方法,也是要被大家说烂了的提高成绩的基本。

数学也是一样,虽然公式多,定义多,图形多,但完全不影响制定数学的学习计划。学习是一个长久性的打算,因此在制定数学学习内容的过程中可以尽量的详细一点。

比如说每天做多少道题,掌握多少个公式,记住几个定义等等。这样才是学好高中数学应该做的步骤。

其次就是每天按照自己给自己的规定去做,不要想着偷懒,今天不爱做就留给明天,想着明天多做点补回来。

这种想法是非常错误的,今天的任务就要今天完成,想着自己为了提高数学成绩,无论如何都要努力。

预习与复习相结合

预习帮助大家在数学课上对知识有一个大概的了解,也对老师要讲的内容有个先知,不至于惊讶惊讶老师接下来要讲什么。

而复习就是对这一堂课的数学学习进行一个验收和反馈,检验自己是否学会数学老师讲的内容;反馈自己的学习成效,及时找到自己数学学习的问题以便及时解决。

这样在学习新的数学知识的时候就不会带着之前留下来的疑问了。这对于学好高中数学,提高数学成绩非常有帮助。

高质量的完成作业

作业是一个很好查缺补漏的过程,因此同学们想要学好数学,就一定要认真完成作业。不要依赖不会就空着等数学老师上课讲这样的想法,这样只会退步。

数学学习就是要不断的动脑解决问题,所以作业要完成,还要高质量的去完成,这样才能不断提高自己的能力。

不要空太多的题不写,就只等着老师公布正确答案和解题过程,这样一来,需要自己消化的数学问题就因为自己的懒惰变得越来越多,以至于影响之后的学习效率。

怎样快速提高数学成绩?

一、查缺补漏,主攻薄弱

请制作“失分分析表”,包括“不会做的”和“不该丢分的”两部分,分析模拟考试等试卷失分情况,在紧跟老师复习的基础上,针对自己的薄弱环节重点弥补、改进。

别一味冲刺难题。做题是对理论知识的进一步巩固与实检,我们要在理解的基础上加强练习,以达到巩固的目的,但不能一味追求难题偏题。

因为中考试卷中有30%是比较灵活的题型,只有10%是真正的难题。30%那部分题目是我们能拿但容易失分的题目,我们要做到尽量多拿分,但如果我们一味求难求险,就会因为忽视基础题型的夯实和巩固而失掉这部分该得的分。在基础掌握后,有条件的同学可再进行一些难题怪题的攻关,这样的策略才更能保证效率。

二、反思错题

不要盲目找题做,陷入题海中,不要“就题论题”停留在“这题我会了”的低水平上。解题能力是在反思中提升的。懂、会、悟是数学水平的三个层次。简单说,听懂了,但不一定会,更不意味着真正领悟了。

送上六把“金钥匙”,开启你的智慧之门—请对着错题,思考、回答以下问题:

1.我为什么没想到?(缺漏)

2.做过类似的题吗?(类比)

3.为什么是这样做?(深究)

4.我错在哪?(归因)

5.有何规律、方法?(提升)

6.还有别的方法吗?(发散)

三、克服无谓失分

如何避免审题出错?

原因:看太快。

应对策略:

1.默读法;2.重点字词圈点勾画法;3.审图法。

如何降低计算失误?

表面原因是粗心,其实是计算能力不足。平时对计算不以为然,认为“没有技术含量”。事实上计算也有很多“聪明算法”,如:边化简边计算、宁加勿减、宁乘勿除、小数化分数、找最小最短的设元、放缩法、凑整法、图象法等等计算技巧。

应对策略:

1.不要为了赶时间而跳步计算;

2.宁可笔算,少用口算,更不要再抱着计算器;

3.对平时易算错的题型,可以验算一遍。

四、关注几个重点问题

1.新定义题型、非常规题型、存在性问题。

2.分析法—执果索因,逆向思维,倒过来想,假设存在;不完全归纳法—根据例子,大胆猜想、努力验证。反例排除法、特殊图形(特殊位置、极端值)探究法等。

提高数学成绩常用方法

1、预习

预期常常由于 “没时间,看不懂,不必要”等等原因被忽略。实际上预习是学习的必要过程,更是提高自学能力的好方法。

2、学会听课

听分析、听思路、听应用,关键内容一字不漏,注意记录。

3、做好错题本

每个会学习的学生都会有错题本。调查发现那些没有错题本,或者是只做不用的同学,学习效果都不好。

4、用好课外书

正确认识网络课程和课外书籍,是副食,是帮助吸收的良药。

5、注重数学思维方法的培养

要注意数学思想和方法的指导,站得高,才能看得远。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:7年级数学知识点

下一篇:返回列表