高等数学知识点梳理
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。下面是小编为大家整理的有关高等数学知识点梳理,希望对你们有帮助!
高等数学知识点梳理1:不定积分
1、知识范围
(1)不定积分、原函数与不定积分的定义、原函数存在定理不定积分的性质
(2)基本积分公式
(3)换元积分法、第一换元法(凑微分法)、第二换元法
(4)分部积分法
(5)一些简单有理函数的积分
2、要求
(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。
(2)熟练掌握不定积分的基本公式。
(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。
(4)熟练掌握不定积分的分部积分法。
(5)会求简单有理函数的不定积分。
高等数学知识点梳理2:向量代数
1、知识范围
(1)向量的概念
向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表示法、向量的方向余弦
(2)向量的线性运算
向量的加法、向量的减法、向量的数乘
(3)向量的数量积
二向量的夹角、二向量垂直的充分必要条件
(4)二向量的向量积、二向量平行的充分必要条件
2、要求
(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。
(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。
(3)熟练掌握二向量平行、垂直的充分必要条件。
高等数学知识点梳理3:函数
1、知识范围
(1)函数的概念
函数的定义、函数的表示法、分段函数、隐函数
(2)函数的性质
单调性、奇偶性、有界性、周期性
(3)反函数
反函数的定义、反函数的图像
(4)基本初等函数
幂函数、指数函数、对数函数、三角函数、反三角函数
(5)函数的四则运算与复合运算
(6)初等函数
2、要求
(1)理解函数的概念,会求函数的表达式、定义域及函数值,会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
高等数学知识点梳理4:数与微分
1、知识范围
(1)导数概念
导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系
(2)求导法则与导数的基本公式
导数的四则运算、反函数的导数、导数的基本公式
(3)求导方法
复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数
(4)高阶导数
高阶导数的定义、高阶导数的计算
(5)微分
微分的定义、微分与导数的关系、微分法则一阶微分形式不变性
2、要求
(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。
(2)会求曲线上一点处的切线方程与法线方程。
(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。
(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
(5)理解高阶导数的概念,会求简单函数的阶导数。
(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。
高等数学知识点梳理5:连续
1、知识范围
(1)函数连续的概念
函数在一点处连续的定义、左连续与右连续函数在一点处连续的充分必要条件、函数的间断点及其分类
(2)函数在一点处连续的性质
连续函数的四则运算、复合函数的连续性、反函数的连续性
(3)闭区间上连续函数的性质
有界性定理、值与最小值定理、介值定理(包括零点定理)
(4)初等函数的连续性
2、要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。