首页 > 学习资料 > 高中 > 高三 >

最新高考高三数学知识点总结

心亡分享 400774

心亡 分享

高中学习容量大,不但要掌握目前的知识,还要把高中的知识与初中的知识溶为一体才能学好。在读书、听课、研习、总结这四个环节都比初中的学习有更高的要求。下面就是小编给大家带来的高三数学知识点,希望大能帮助到大家!

最新高考高三数学知识点总结


更多的【高考数学知识点】请点击下 方↓↓↓

★最新高考数学知识点归纳总结★

★做好高考数学选择题的技巧★

★高三高考数学复习总策略★

★高考数学学习方法及复习策略★

★高考数学一轮复习策略分享★


高三数学知识点1

(1)不等关系

感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式

①经历从实际情境中抽象出一元二次不等式模型的过程。

②通过函数图象了解一元二次不等式与相应函数、方程的联系。

③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题

①从实际情境中抽象出二元一次不等式组。

②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。

③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。

(4)基本不等式:。

①探索并了解基本不等式的证明过程。

②会用基本不等式解决简单的(小)值问题。

高三数学知识点2

1.数列的定义

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.

(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.

(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.

(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

2.数列的分类

(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.

(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.

3.数列的通项公式

数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,

这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,

由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.

再强调对于数列通项公式的理解注意以下几点:

(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.

(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.

(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.

如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.

(4)有的数列的通项公式,形式上不一定是的,正如举例中的:

(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.

4.数列的图象

对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:

序号:1234567

项:45678910

这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.

由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.

数列是一种特殊的函数,数列是可以用图象直观地表示的.

数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.

把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.

5.递推数列

一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①

数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。

高三数学知识点3

一、柱、锥、台、球的结构特征

结构特征

图例

棱柱

(1)两底面相互平行,其余各面都是平行四边形;

(2)侧棱平行且相等.

圆柱

(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;

(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.

棱锥

(1)底面是多边形,各侧面均是三角形;

(2)各侧面有一个公共顶点.

圆锥

(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.

棱台

(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.

圆台

(1)两底面相互平行;

(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分.

(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.

二、简单组合体的结构特征

三、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:

正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

四、空间几何体的直观图——斜二测画法

斜二测画法特点:

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

五、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,h'为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

(4)球体的表面积和体积公式:

高三数学知识点4

一次函数的定义

一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

一次函数的性质

一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数

注:一次函数一般形式y=kx+b(k不为0)

a)k不为0

b)x的指数是1

c)b取任意实数

一次函数y=kx+b的图像是经过(0,b)和(-b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看做直线y=kx平移|b|个单位长度得到。(当b>0时,向上平移;b<0时,向下平移)

高三数学知识点5

等差数列的基本性质

⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

⑶若{an}{bn}为等差数列,则{an±bn}与{kan+bn}(k、b为非零常数)也是等差数列.

⑷对任何m、n,在等差数列中有:an=am+(n-m)d(m、n∈N+),特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

⑸、一般地,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq.

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).

(7)下表成等差数列且公差为m的项ak.ak+m.ak+2m.....(k,m∈N+)组成公差为md的等差数列。

⑻在等差数列中,从第二项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:高三物理重点高考知识点梳理

下一篇:返回列表