首页 > 教学资源 > 教学设计 >

高考数学教案大全

嗯哼分享 397310

嗯哼 分享

通过编写教案,教师可以明确教学目标、教学内容和教学计划,以便更好地组织教学,从而提高教学质量和效率。怎样才能写好高考数学教案大全?这里给大家提供高考数学教案大全,方便大家学习。

高考数学教案大全篇1

1、教材(教学内容)

本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

2、设计理念

本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、

3、教学目标

知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、

情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

4、重点难点

重点:任意角三角函数的定义、

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

5、学情分析

学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、

6、教法分析

“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

7、学法分析

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。

高考数学教案大全篇2

教学目的:

1、使理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。

2、了解线段垂直平分线的轨迹问题。

3、结合教学内容培养学生的动作、形象和抽象。

教学重点:

线段的垂直平分线性质定理及逆定理的引入证明及运用。

教学难点:

线段的垂直平分线性质定理及逆定理的关系。

教学关键:

1、垂直平分线上所有的点和线段两端点的距离相等。

2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。

教具:

投影仪及投影胶片。

教学过程:

一、提问

1、角平分线的性质定理及逆定理是什么?

2、怎样做一条线段的垂直平分线?

二、新课

1、请同学们在练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。

2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?

通过学生的观察、分析得出结果PA=PB,再取一点P试一试仍然有PA=PB,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。

定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。

这个命题,是我们通过作图、观察、猜想得到的`,还得在理论上加以证明是真命题才能做为定理。

已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上

求证:PA=PB

如何证明PA=PB学生分析得出只要证RTΔPCA≌RTΔPCB

证明:∵PC⊥AB(已知)

∴∠PCA=∠PCB(垂直的定义)

在ΔPCA和ΔPCB中

∴ΔPCA≌ΔPCB(SAS)

即:PA=PB(全等三角形的对应边相等)。

反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?

过P,P1做直线EF交AB于C,可证明ΔPAP1≌PBP1(SSS)

∴EF是等腰三角型ΔPAB的顶角平分线

∴EF是AB的垂直平分线(等腰三角形三线合一性质)

∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的所有点的集合。

线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。

三、举例(用幻灯展示)

例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。

证明:∵点P在线段AB的垂直平分线上

∴PA=PB

同理PB=PC

∴PA=PB=PC

由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。

四、小结

正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。

高考数学教案大全篇3

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高考数学教案大全篇4

教学目标:

1.理解流程图的选择结构这种基本逻辑结构.

2.能识别和理解简单的框图的功能.

3.能运用三种基本逻辑结构设计流程图以解决简单的问题.

教学方法:

1.通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.

2.在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.

教学过程:

一、问题情境

1.情境:

某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

其中(单位:)为行李的重量.

试给出计算费用(单位:元)的一个算法,并画出流程图.

二、学生活动

学生讨论,教师引导学生进行表达.

解算法为:

输入行李的重量;

如果,那么,

否则;

输出行李的重量和运费.

上述算法可以用流程图表示为:

教师边讲解边画出第10页图1-2-6.

在上述计费过程中,第二步进行了判断.

三、建构数学

1.选择结构的概念:

先根据条件作出判断,再决定执行哪一种

操作的结构称为选择结构.

如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.

2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判

断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执

行,但或两个框中可以有一个是空的,即不执行任何操作;

(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和

两个退出点.

3.思考:教材第7页图所示的算法中,哪一步进行了判断?

高考数学教案大全篇5

一、目标

1、知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2、过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3、情感、态度与价值观

学生通过动手作图,用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入揭示题

例1尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比理解题

1、投影介绍流程图的符号、名称及功能说明。

符号符号名称功能说明

终端框算法开始与结束

处理框算法的各种处理操作

判断框算法的各种转移

输入输出框输入输出操作

指向线指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条进行判断决定后面的步骤的结构

流程图:

3、用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式求s

③输出s

流程图

(2)已知函数对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

①输入X值

②判断X的范围,若,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作经历题

1、用流程图表示确定线段AB的一个16等分点

2、分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

流程图:

(四)归纳小结巩固题

1、顺序结构和选择结构的模式是怎样的?

2、怎样用流程图表示算法。

(五)练习P992

(六)作业P991

高考数学教案大全篇6

各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。

下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

(二)教学内容

本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

二、教学目标分析

根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

知识目标——理解“三个二次”的&39;关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、重难点分析

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

四、教法与学法分析

(一)学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

(二)教法分析

本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

五、课堂设计

本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

(一)创设情景,引出“三个一次”的关系

本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

为此,我设计了以下几个问题:

1、请同学们解以下方程和不等式:

①2x-7=0;②2x-70;③2x-70

学生回答,我板书。

2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。

3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。

4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:

①2x-7=0的解恰是函数y=2x-7的图象与x轴

交点的横坐标。

②2x-70的解集正是函数y=2x-7的图象

在x轴的上方的点的横坐标的集合。

③2x-70的解集正是函数y=2x-7的图象

在x轴的下方的点的横坐标的集合。

三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-60的解集。

(二)比旧悟新,引出“三个二次”的关系

为此我引导学生作出函数y=x2-x-6的图象,按照“看一看说一说问一问”的思路进行探究。

看函数y=x2-x-6的图象并说出:

①方程x2-x-6=0的解是

x=-2或x=3;

②不等式x2-x-60的解集是

{x-2,或x3};

③不等式x2-x-60的解集是

{x-23}。

此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。

学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系?

(三)归纳提炼,得出“三个二次”的关系

1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。

2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)

(四)应用新知,熟练掌握一元二次不等式的解集

借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:

例1、解不等式2x2-3x-20

解:因为Δ0,方程2x2-3x-2=0的解是

x1=,x2=2

所以,不等式的解集是

{x,或x2}

例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。

下面我们接着学习课本例2。

例2解不等式-3x2+6x2

课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。

通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。

例3解不等式4x2-4x+10

例4解不等式-x2+2x-30

分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。

4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。

(五)总结

解一元二次不等式的“四部曲”:

(1)把二次项的系数化为正数

(2)计算判别式Δ

(3)解对应的一元二次方程

(4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集

(六)作业布置

为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。

(1)必做题:习题1.5的1、3题

(2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c0的解集为M,ax2+bx+c0的解集为N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求实数k的取值范围。

(七)板书设计

一元二次不等式解法(1)

五、教学效果评价

本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。

高考数学教案大全篇7

一、教材分析

1.教材地位和作用

在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4,学生也学习了三角函数、平面向量等内容。这些为学生学习正弦定理提供了坚实的基础。正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。依据教材的上述地位和作用,我确定如下教学目标和重难点

2.教学目标

(1)知识目标:

①引导学生发现正弦定理的内容,探索证明正弦定理的方法;

②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。

(2)能力目标:

①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。

②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。

(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。3.教学的重﹑难点

教学重点:正弦定理的内容,正弦定理的证明及基本应用;教学难点:正弦定理的探索及证明;

教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段

二、教学方法与手段

1.教学方法

教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。

2.学法指导

学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。

学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。

3.教学手段

利用多媒体展示图片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。为了提高课堂效率,便于学生动手练习,我把本节课的例题、课堂练习制作成一张习题纸,课前发给学生。

下面我讲解如何运用上述教学方法和手段开展教学过程

三、教学过程设计

教学流程:

引出课题

引出新知

归纳方法

巩固新知

布置作业

四、总结分析:

现代教育心理学的研究认为,有效的性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了:㈠在学生已有知识结构和新性质概念间寻找“最近发展区”.㈡引导学生通过同化,顺应掌握新概念。

㈢设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程”的新天地。

我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合﹑学用结合”原则。希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.

设计意图:我的板书设计的指导原则:简明直观,重点突出。本节课的板书教学重点放在黑板的正中间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。

谢谢!

高考数学教案大全篇8

[学习目标]

(1)会用坐标法及距离公式证明Cα+β;

(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα-β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题.

[学习重点]

两角和与差的正弦、余弦、正切公式

[学习难点]

余弦和角公式的推导

[知识结构]

1.两角和的余弦公式是三角函数一章和、差、倍公式系列的基础.其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

2.通过下面各组数的值的比较:①cos(30°-90°)与cos30°-cos90°②sin(30°+60°)和sin30°+sin60°.我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ.但不排除一些特例,如sin(0+α)=sin0+sinα=sinα.

3.当α、β中有一个是的整数倍时,应首选诱导公式进行变形.注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例.

4.关于公式的正用、逆用及变用

高考数学教案大全篇9

教学目标:

1.理解流程图的选择结构这种基本逻辑结构.

2.能识别和理解简单的框图的功能.

3.能运用三种基本逻辑结构设计流程图以解决简单的问题.

教学方法:

1.通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.

2.在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.

教学过程:

一、问题情境

1.情境:

某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

其中(单位:)为行李的重量.

试给出计算费用(单位:元)的一个算法,并画出流程图.

二、学生活动

学生讨论,教师引导学生进行表达.

解算法为:

输入行李的重量;

如果,那么,

否则;

输出行李的重量和运费.

上述算法可以用流程图表示为:

教师边讲解边画出第10页图1-2-6.

在上述计费过程中,第二步进行了判断.

三、建构数学

1.选择结构的概念:

先根据条件作出判断,再决定执行哪一种

操作的结构称为选择结构.

如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.

2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判

断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执

行,但或两个框中可以有一个是空的,即不执行任何操作;

(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和

两个退出点.

3.思考:教材第7页图所示的算法中,哪一步进行了判断?

高考数学教案大全篇10

教学准备

教学目标

数列求和的综合应用

教学重难点

数列求和的综合应用

教学过程

典例分析

3.数列{an}的前n项和Sn=n2-7n-8,

(1)求{an}的通项公式

(2)求{an}的前n项和Tn

4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则m-n=

6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn,求数列{bn}前n项和公式

7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有值,并求出它的值

.已知数列{an},an∈N__,Sn=(an+2)2

(1)求证{an}是等差数列

(2)若bn=an-30,求数列{bn}前n项的最小值

0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N__)

(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.

11.购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12.某商品在最近100天内的价格f(t)与时间t的

函数关系式是f(t)=

销售量g(t)与时间t的函数关系是

g(t)=-t/3+109/3(0≤t≤100)

求这种商品的日销售额的值

注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的值,应分别求出函数在各段中的值,通过比较,确定值

高考数学教案大全篇11

教学准备

教学目标

掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.

教学重难点

掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.

教学过程

【示范举例】

例1:数列是首项为23,公差为整数,

且前6项为正,从第7项开始为负的等差数列

(1)求此数列的公差d;

(2)设前n项和为Sn,求Sn的值;

(3)当Sn为正数时,求n的值.

高考数学教案大全篇12

教学目标:

通过实例,理解幂函数的概念;能区分指数函数与幂函数;会用待定系数法求幂函数的解析式。

教学重难点:

重点从五个具体幂函数中认识幂函数的一些特征.

难点指数函数与幂函数的区别和幂函数解析式的求解.

教学方法与手段:

1.采用师生互动的方式,在教师的引导下,学生通过思考、交流、讨论,理解幂函数的定义,体验自主探索、合作交流的学习方式,充分发挥学生的积极性与主动性.

2.利用投影仪及计算机辅助教学.

教学过程:

函数的完美追求:对于式子,

如果一定,N随的变化而变化,我们建立了指数函数;

如果一定,随N的变化而变化,我们建立了对数函数.

设想:如果一定,N随的变化而变化,是不是也应该确定一个函数呢?

创设情境

请大家看以下问题:

思考:以上问题中的函数有什么共同特征?

引导学生分析归纳概括得出:(1)都是以自变量x为底数;(2)指数为常数;(3)自变量x前的系数为1;(4)只有一项.上述问题中涉及的函数,都是形如的函数.

探究新知

一、幂函数的定义

一般地,形如的函数称为幂函数,其中是自变量,是常数.

中前面的系数是1,后面没有其它项.

小试牛刀

判断下列函数是否为幂函数:

(1),

思考:幂函数与指数函数有什么区别?

二、幂函数与指数函数的对比

高考数学教案大全篇13

一、教材分析

1、本节教材的地位和作用

“基本不等式”是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完“不等式的性质”、“不等式的解法”及“线性规划”的基础上对不等式的进一步研究.在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。

2、教学目标

(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。

(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。?

(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。

3、教学重点、难点

根据课程标准制定如下的教学重点、难点

重点:应用数形结合的思想理解不等式,并从不同角度探索基本不等式。

难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。

二、教法说明

本节课借助几何画板,使用多媒体辅助进行直观演示.采用启发式教学法创设问题情景,激发学生开始尝试活动.运用生活中的实际例子,让学生享受解决实际问题的乐趣.课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。

三、学法指导

为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导.因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。

四、教学设计

◆运用2002年国际数学家大会会标引入

◆运用分析法证明基本不等式

◆不等式的几何解释

◆基本不等式的应用

1、运用2002年国际数学家大会会标引入

如图,这是在北京召开的第24届国际数学家大会会标.会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车)

正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_

从图形中易得,s≥s’,即

问题1:它们有相等的情况吗?何时相等?

问题2:当a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解)

一般地,对于任意实数a、b,我们有

当且仅当(重点强调)a=b时,等号成立(合情推理)

问题3:你能给出它的证明吗?(让学生独立证明)

设计意图

(1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。

(2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。

(3)三个思考题为学生创造情景,逐层深入,强化理解.

2、运用分析法证明基本不等式

如果a>0,b>0,

用和分别代替a,b。可以得到

也可写成

(强调基本不等式成立的前提条件“正”)(演绎推理)

问题4:你能用不等式的性质直接推导吗?

要证=1GB3①

只要证=2GB3②

要证②,只要证=3GB3③

要证=3GB3③,只要证=4GB3④

显然,④是成立的.当且仅当a=b时,不等式中的等号成立.

(强调基本不等式取等的条件“等”)

设计意图

(1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神;

(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解;

(3)此种证明方法是“分析法”,在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。

3、不等式的几何解释

如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD=,半径为

问题5:你能用这个图得出基本不等式的几何解释吗?(学生积极思考,通过几何画板帮助学生理解)

设计意图

几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。

4、基本不等式的应用

例1.证明

(学生自己证明)

设计意图

(1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习“分析法”证明不等式的过程;

(2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式;

(3)此例不是课本例题,比课本例题简单,这样,循序渐进,有利于学生理解不等式的内涵。

例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小?

(2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大?

(让学生分组合作、探究完成)

高考数学教案大全篇14

一.教学目标

1.知识技能:了解幂函数定义,掌握一些常见幂函数的图像及性质和一般幂函数第一象限内图像特点

2.过程与方法:通过形式来定义幂函数,比较幂函数和指数函数得出其特有的形式特点,观察图像归纳总结出其函数性质,数形结合找规律

3.情感、态度和价值观:函数图像直接反应函数性质,同样由函数性质也能大致画出其图像,对图像与性质之间的关系进行探索体会

二.重难点

重点:幂函数的定义,常见幂函数的图像和性质,一般幂函数第一象限的大致图像再利用其性质得到整体图像

难点:其一般的性质分析,再由性质得到一般图像

三.教学方法和用具

方法:归纳总结,数形结合,分析验证

用具:幻灯片,几何画板,黑板

四.教学过程

(幻灯片见附件)

1.设置问题情境,找出所得函数的共同形式,由形式给出幂函数的定义(幻灯片1?幻灯片2)(板书)

2.从形式上比较指数函数和幂函数的异同(幻灯片3)

3.利用定义的形式,判断所给函数是否是幂函数,并得出判断依据(幻灯片4)

4.画常见的三种幂函数的图像,再让学生用描点法画另两种,并用几何画板验证(幻灯片5)(几何画板)

5.用几何画板画出这五个幂函数的图像,观察图像完成书中幂函数的函数性质的表格,并分析得出更一般的结论(板书)(几何画板)

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:2024小学数学教案万能模板

下一篇:初中英语教案万能模板范文