勾股定理的教学设计
教学设计是为了提高教学效率和教学质量,使学生在单位时间内能够学到更多的知识,更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。下面是小编为大家收集整理的勾股定理的教学设计,希望对你有所帮助。
勾股定理的教学设计(精选篇1)
一、教学目标:
掌握勾股定理,能用勾股定理解决某些简单的实际问题。
二、教学重点:掌握勾股定理,能用勾股定理解决某些简单的实际问题。
教学难点:熟练勾股定理,并利用它们的特征解决问题。
三、教学过程
(一)合作交流: 1、如图①在RT△ABC中,∠C=90o,由勾股定理,
得c2=_____________, c=__________
2、在Rt△ABC中,∠C=90o
① 若a=1,b=2,则c2=_________=_________=_____∴c=_________
② 若a=1,c=2,则b2=___________=________=______∴b=_________
③ 若c=10,b=6, 则a2=___________=________=______∴a=_________
(二)综合应用:
例1:(1)在长方形ABCD中AB、BC、AC大小关系?
(2)一个门框的尺寸如图1所示。
①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?
②若薄木板长3米,宽2.2米呢?为什么?
解:(1)___________________
( 2)答: ①:__________
②:_________
在Rt△ABC中, 由勾股定理,得AC2=AB2+BC2=________=___
因为AC______木板的宽,所以木板_________从门框内通过。
(三)巩固提高
1、已知要从电杆离地面5米处向地面拉一条长7米的电缆,
求地面电缆固定点A到电线杆底部B的距离。
解:由题意得,在Rt△ABC中: =5米, =7米
根据勾股定理,得AB2=
∴AB=
2、如图,一个圆锥的高AO=2.4cm,底面半径OB=0.7cm,
求AB的长。
解:
3、如图,为了求出位于湖两岸的两点A、 B之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160米,BC长128米.问从点A穿过湖到点B有多远?
解:由题意得:在 中,
根据勾股定理得:
∴AB=
∴从点A穿过湖到点B有
4、求下列阴影部分的面积:
(1) 阴影部分是正方形; (2) 阴影部分是长方形; (3) 阴影部分是半圆.
正方形的边长=
正方形的面积=________ ______
(2)
长方形的长=
长方形的面积为________________
(3)
圆的半径=
半圆的面积为__________________
5、一旗杆离地面6米处折断,旗杆顶部落在离旗杆8米处,旗杆折断之前有多少米?
(提示:折断前的长度应该是AB+BC的长)
解:
6、如图所示,求矩形零件上两孔中心A和B的距离。
(精确到0.1mm)(分析:求两孔中心A和B的距离即
求线段____的长度)
解: 如图:AC=
BC=
∵Rt△ABC中,∠C=90o,
由勾股定理,得
∴AB2=_________=
∴AB=
答:
7、在△ABC中,∠C=900,AB=10。
(1)若∠B=300,求BC、AC。
(2)若∠A=450,求BC、AC。
8、如图,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米。
①求梯子的底端B距墙角O多少米?
②如果梯子的顶端A沿墙角下滑0.5米至C,请同学们:
猜一猜,底端也将滑动0.5米吗?
算一算,底端滑动的距离近似值是多少? (结果保留两位小数)
9、一艘轮船以16海里/时的速度离开港口A向东南方向航行。另一艘轮船在同时同地以12海里/时的速度向西南方向航行,它们离开港口一个半小时后相距多远?(自已画图,标字母,求解)。
(四)课堂小结
这节课我们学习了什么内容?有什么收获?你还有什么疑问吗?
(五)作业
(六)课堂反思
勾股定理的教学设计(精选篇2)
【学习目标】
能运用勾股定理及直角三角形的判别条件解决简单的实际问题.
【学习重点】
勾股定理及直角三角形的判别条件的运用.
【学习重点】
直角三角形模型的建立.
【学习过程】
一.课前复习
勾股定理及勾股定理逆定理的区别
二.新课学习
探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题
1.3如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?
思考:
1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为
这样的线路有几条?可分为几类?
2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从
A点到B点的最短路线是什么?你是如何画的?
1.33.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。
4.你是如何将这个实际问题转化为数学问题的?
小结:
你是如何解决圆柱体侧面上两点之间的最短距离问题的?
探究点二:利用勾股定理逆定理如何判断两线垂直?
1.31.31.3李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直底边AB,
但他随身只带了卷尺。(参看P13页雕塑图1-13)
(1)你能替他想办法完成任务吗?
1.31.3(2)李叔叔量得AD的长是30cm,AB的长是40cm,
BD长是50cm.AD边垂直于AB边吗?你是如何解决这个问题的?
(3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?
探究点三:利用勾股定理的方程思想在实际问题中的应用
例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.
1.3
思考:
1.求滑道AC的长的问题可以转化为什么数学问题?
2.你是如何解决这个问题的?写出解答过程。
小结:
方程思想是勾股定理中的重要思想,勾股定理反应的直角三角形三边的关系正是构建方程的基础.
四.课堂小结:本节课你学到了什么?
三.新知应用
1.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.
1.3
2.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()
1.3
五.作业布置:习题1.41,3,4题
勾股定理的教学设计(精选篇3)
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念.
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力.
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣.
(2)在解决实际问题的过程中,体验数学学习的实用性.
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.
教学准备:
多媒体
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的.蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.
学生汇总了四种方案:
(1) (2) (3)(4)
学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.
如图:
(1)中A→B的路线长为:AA’+d;
(2)中A→B的路线长为:AA’+A’B>AB;
(3)中A→B的路线长为:AO+OB>AB;
(4)中A→B的路线长为:AB.
得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?
2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.
3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?
第五环节 课堂小结(3分钟,师生问答)
内容:
1、如何利用勾股定理及逆定理解决最短路程问题?
第六 环节:布置作业(2分钟,学生分别记录)
内容:
作业:1.课本习题1.5第1,2,3题.
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:
教学反思:
勾股定理的教学设计(精选篇4)
1、勾股定理
勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.
即直角三角形两直角的平方和等于斜边的平方.
因此,在运用勾股定理计算三角形的边长时,要注意如下三点:
(1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形;
(2)注意分清斜边和直角边,避免盲目代入公式致错;
(3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长.即c2=a2+b2,a2=c2-b2,b2=c2-a2.
2.学会用拼图法验证勾股定理
拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.
如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.
请读者证明.
如上图示,在图(1)中,利用图1边长为a,b,c的'四个直角三角形拼成的一个以c为边长的正方形,则图2(1)中的小正方形的边长为(b-a),面积为(b-a)2,四个直角三角形的面积为4×ab=2ab.
由图(1)可知,大正方形的面积=四个直角三角形的面积+小正方形的的面积,即c2=(b-a)2+2ab,则a2+b2=c2问题得证.
请同学们自己证明图(2)、(3).
3.在数轴上表示无理数
将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.
二、典例精析
例1如果直角三角形的斜边与一条直角边的长分别是13cm和5cm,那么这个直角三角形的面积是cm2.
分析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可.根据勾股定理公式的变形,可求得.
解:由勾股定理,得
132-52=144,所以另一条直角边的长为12.
所以这个直角三角形的面积是×12×5=30(cm2).
例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点A爬到
顶点B,则它走过的最短路程为()
A.B.C.3aD.分析:本题显然与例2属同种类型,思路相同.但正方体的
各棱长相等,因此只有一种展开图.
解:将正方体侧面展开
勾股定理的教学设计(精选篇5)
重点、难点分析
本节内容的重点是勾股定理的逆定理及其应用。它可用边的关系判断一个三角形是否为直角三角形。为判断三角形的形状提供了一个有力的依据。
本节内容的难点是勾股定理的逆定理的应用。在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方。
教法建议:
本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法。通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题。在课堂教学中营造轻松、活泼的课堂气氛。通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的。具体说明如下:
(1)让学生主动提出问题
利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。所有这些都由学生自己完成,估计学生不会感到困难。这样设计主要是培养学生善于提出问题的`习惯及能力。
(2)让学生自己解决问题
判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路。
(3)通过实际问题的解决,培养学生的数学意识。
教学目标:
1、知识目标:
(1)理解并会证明勾股定理的逆定理;
(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;
(3)知道什么叫勾股数,记住一些觉见的勾股数。
2、能力目标:
(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;
(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力。
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过知识的纵横迁移感受数学的辩证特征。
教学重点:
勾股定理的逆定理及其应用
教学难点:
勾股定理的逆定理及其应用
教学用具:
直尺,微机
教学方法:
以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习(投影)
勾股定理的内容
文字叙述(投影显示)
符号表述
图形(画在黑板上)
2、逆定理的获得
(1)让学生用文字语言将上述定理的逆命题表述出来
(2)学生自己证明
逆定理:如果三角形的三边长 有下面关系:
那么这个三角形是直角三角形
强调说明:
(1)勾股定理及其逆定理的区别
勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。
(2)判定直角三角形的方法:
①角为 、
②垂直、
③勾股定理的逆定理
2、 定理的应用(投影显示题目上)
例1 如果一个三角形的三边长分别为
则这三角形是直角三角形
例2 如图,已知:CD⊥AB于D,且有
求证:△ACB为直角三角形。
以上例题,分别由学生先思考,然后回答。师生共同补充完善。(教师做总结)
4、课堂小结:
(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)
(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。
5、布置作业:
a、书面作业P131#9
b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8
求证:△DEF是等腰三角形
勾股定理的教学设计(精选篇6)
教学目标:
1、知识目标:
(1)掌握勾股定理;
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史.
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育.
教学重点:勾股定理及其应用
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习
(1)三角形的三边关系
(2)问题:(投影显示)
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得
让学生用文字语言将上述问题表述出来.
勾股定理:直角三角形两直角边 的平方和等于斜边 的平方
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边
(2)学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.
3、定理的证明方法
方法一:将四个全等的直角三角形拼成如图1所示的正方形.
方法二:将四个全等的直角三角形拼成如图2所示的正方形,
方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形
以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明
4、定理与逆定理的应用
例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.
解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有
∴ ∠2=∠C
又
∴
∴CD的长是2.4cm
例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,
求证:
证法一:过点A作AE⊥BC于E
则在Rt△ADE中,
又∵AB=AC,∠BAC=
∴AE=BE=CE
即
证法二:过点D作DE⊥AB于E, DF⊥AC于F
则DE∥AC,DF∥AB
又∵AB=AC,∠BAC=
∴EB=ED,FD=FC=AE
在Rt△EBD和Rt△FDC中
在Rt△AED中,
∴
例3 设
求证:
证明:构造一个边长 的矩形ABCD,如图
在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF
即
例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.
解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为
AD+AB+BC=3,AB+BC+CD=3
图3中,在Rt△DGF中
同理
∴图3中的路线长为
图4中,延长EF交BC于H,则FH⊥BC,BH=CH
由∠FBH= 及勾股定理得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此图中总线路的长为4EA+EF=
∵3>2.828>2.732
∴图4的连接线路最短,即图4的架设方案最省电线.
5、课堂小结:
(1)勾股定理的内容
(2)勾股定理的作用
已知直角三角形的两边求第三边
已知直角三角形的一边,求另两边的关系
6、布置作业:
a、书面作业P130#1、2、3
b、上交作业P132#1、3
7、板书设计:
8、探究活动
台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响
(1)该城市是否会受到这交台风的影响?请说明理由
(2)若会受到台风影响,那么台风影响该城市持续时间有多少?
(3)该城市受到台风影响的最大风力为几级?
勾股定理的教学设计(精选篇7)
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念.
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力.
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣.
(2)在解决实际问题的过程中,体验数学学习的实用性.
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.
教学准备:
多媒体
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.
学生汇总了四种方案:
(1) (2) (3)(4)
学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.
如图:
(1)中A→B的路线长为:AA’+d;
(2)中A→B的路线长为:AA’+A’B>AB;
(3)中A→B的路线长为:AO+OB>AB;
(4)中A→B的路线长为:AB.
得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?
2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.
3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?
第五环节 课堂小结(3分钟,师生问答)
内容:
1、如何利用勾股定理及逆定理解决最短路程问题?
第六 环节:布置作业(2分钟,学生分别记录)
内容:
作业:1.课本习题1.5第1,2,3题.
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:
教学反思:
勾股定理的教学设计(精选篇8)
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题.
2.进一步加深性质定理与判定定理之间关系的认识.
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题.
2.难点:灵活应用勾股定理及逆定理解决实际问题.
3.难点的突破方法:
三、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.
四、例习题分析
例1(P83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.
解略.
本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.