首页 > 教学资源 > 教案 > 数学教案 >

新人教版八年级数学上册名师教案

花祭分享 54576

花祭 分享

新人教版八年级数学上册名师教案(6篇)

数学家实际上是一个著迷者,不迷就没有数学。”“没有大胆的猜测,就做不出伟大的发现。”这里给大家分享一些关于新人教版八年级数学上册名师教案,供大家参考学习。

新人教版八年级数学上册名师教案

新人教版八年级数学上册名师教案(篇1)

教学目标:

1、经历数据离散程度的探索过程

2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:

会计算某些数据的极差、标准差和方差。

教学难点:

理解数据离散程度与三个差之间的关系。

教学准备:

计算器,投影片等

教学过程:

一、创设情境

1、投影课本P138引例。

(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)

2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究

如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)

问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?

2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?

(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:

方差:各个数据与平均数之差的平方的平均数,记作s2

设有一组数据:x1, x2, x3,,xn,其平均数为

则s2= ,

而s= 称为该数据的标准差(既方差的算术平方根)

从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做

你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?

(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)

五、巩固练习:课本第172页随堂练习

六、课堂小结:

1、怎样刻画一组数据的离散程度?

2、怎样求方差和标准差?

七、布置作业:习题5.5第1、2题。

新人教版八年级数学上册名师教案(篇2)

教学目标:

1.知道负整数指数幂=(a≠0,n是正整数).

2.掌握整数指数幂的运算性质.

3.会用科学计数法表示小于1的数.

教学重点:

掌握整数指数幂的运算性质.

难点:

会用科学计数法表示小于1的数.

情感态度与价值观:

通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践.能利用事物之间的类比性解决问题.

教学过程:

一、课堂引入

1.回忆正整数指数幂的运算性质:

(1)同底数的幂的乘法:am?an = am+n (m,n是正整数);

(2)幂的乘方:(am)n = amn (m,n是正整数);

(3)积的乘方:(ab)n = anbn (n是正整数);

(4)同底数的幂的除法:am÷an = am?n ( a≠0,m,n是正整数,m>n);

(5)商的乘方:()n = (n是正整数);

2.回忆0指数幂的规定,即当a≠0时,a0 = 1.

3.你还记得1纳米=10?9米,即1纳米=米吗?

4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

二、总结: 一般地,数学中规定: 当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数) 教师启发学生由特殊情形入手,来看这条性质是否成立. 事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n (m,n是整数)这条性质也是成立的.

三、科学记数法:

我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5. 即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数. 启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

新人教版八年级数学上册名师教案(篇3)

5 14.3.2.2 等边三角形(二)

教学目标

掌握等边三角形的性质和判定方法.

培养分析问题、解决问题的能力.

教学重点

等边三角形的性质和判定方法.

教学难点

等边三角形性质的应用

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

III课堂小结

1、等腰三角形和性质

2、等腰三角形的条件

V布置作业

1.教科书第147页练习1、2

2.选做题:

(1)教科书第150页习题14.3第ll题.

(2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

(3)《课堂感悟与探究》

5

新人教版八年级数学上册名师教案(篇4)

活动一、创设情境

引入:首先我们来看几道练习题(幻灯片)

(复习:平行线及三角形全等的知识)

下面我们一起来欣赏一组图片(幻灯片)

[学生活动]观看后答问题:你看到了哪些图形?

(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

[学生活动]小组合作交流,拼出图案的类型。

同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)

活动二、合作交流,探求新知

问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

[学生活动]认真观察、讨论、思考、推理。

鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。

学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。

并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。

平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?

[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

小结平行四边形的性质:

平行四边形的对边相等

平行四边形的对角相等(这里要弄清对角、对边两个名词)

你能演示你的结论是如何得到的吗?(学生演示)

你能证明吗?(幻灯片出示证明题)

[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

自己完成性质2的证明。

活动三、运用新知

性质掌握了吗?一起来看一道题目:

尝试练习(幻灯片)例1

[学生活动]作尝试性解答。

新人教版八年级数学上册名师教案(篇5)

一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

1.平移

2.平移的性质:

⑴经过平移,对应点所连的线段平行且相等;

⑵对应线段平行且相等,对应角相等。

⑶平移不改变图形的大小和形状(只改变图形的位置)。

(4)平移后的图形与原图形全等。

3.简单的平移作图

①确定个图形平移后的位置的条件:

⑴需要原图形的位置;

⑵需要平移的方向;

⑶需要平移的距离或一个对应点的位置。

②作平移后的图形的方法:

⑴找出关键点;⑵作出这些点平移后的对应点;

⑶将所作的对应点按原来方式顺次连接,所得的;

二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

1.旋转

2.旋转的性质

⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

⑷旋转前后的两个图形全等。

3.简单的旋转作图

⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

三、分析组合图案的形成

①确定组合图案中的“基本图案”

②发现该图案各组成部分之间的内在联系

③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;

⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。

新人教版八年级数学上册名师教案(篇6)

平方差公式

学习目标:

1、能推导平方差公式,并会用几何图形解释公式;

2、能用平方差公式进行熟练地计算;

3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.

学习重难点:

重点:能用平方差公式进行熟练地计算;

难点:探索平方差公式,并用几何图形解释公式.

学习过程:

一、自主探索

1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.

3、你能用自己的语言叙述你的发现吗?

4、平方差公式的特征:

(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。

(2)、公式中的a与b可以是数,也可以换成一个代数式。

二 、试一试

例1、利用平方差公式计算

(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

例2、利用平方差公式计算

(1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

三、合作交流

如图,边长为a的大正方形中有一个边长为b的小正方形.

(1)请表示图中阴影部分的面积.

(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b

(3)比较(1)(2)的结果,你能验证平方差公式吗?

四、巩固练习

1、利用平方差公式计算

(1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

(3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

2、利用平方差公式计算

(1)803797 (2)398402

3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

A.只能是数B.只能是单项式 C.只能是多项式 D.以上都可以

4.下列多项式的乘法中,可以用平方差公式计算的是( )

A.(a+b)(b+a) B.(-a+b)(a-b)

C.( a+b)(b- a) D.(a2-b)(b2+a)

5.下列计算中,错误的有( )

①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

A.1个 B.2个 C.3个 D.4个

6.若x2-y2=30,且x-y=-5,则x+y的值是( )

A.5 B.6 C.-6 D.-5

7.(-2x+y)(-2x-y)=______.

8.(-3x2+2y2)(______)=9x4-4y4.

9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.

11.利用平方差公式计算:20 19 .

12.计算:(a+2)(a2+4)(a4+16)(a-2).

五、学习反思

我的收获:

我的疑惑:

六、当堂测试

1、下列多项式乘法中能用平方差公式计算的是( ).

(A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

2、填空:(1)(x2-2)(x2+2)=

(2)(5x-3y)( )=25x2-9y2

3、计算:

(1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

4.利用平方差公式计算

①1003997 ②14 15

七、课外拓展

下列各式哪些能用平方差公式计算?怎样用?

1) (a-b+c)(a-b-c)

2) (a+2b-3)(a-2b+3)

3) (2x+y-z+5)(2x-y+z+5)

4) (a-b+c-d)(-a-b-c-d)

2.2完全平方公式(1)

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:新人教版八年级数学上册全册名师教案

下一篇:骨干教师人教版八年级上册数学教案