首页 > 教学资源 > 教案 > 数学教案 >

《数轴》七年级数学教案

安然分享 415330

安然 分享

教案不是一成不变的,它可以根据教学原则、教学方法、教学任务等进行调整,也可以根据实际情况及时修改、补充。下面是小编为大家收集整理的《数轴》七年级数学教案,希望对你有所帮助。

《数轴》七年级数学教案

《数轴》七年级数学教案精选篇1

一、学习目标:

1、什么是数轴?数轴上的点和有理数的对应关系?

2、你会用数轴上的点表示给定的有理数吗?会根据数轴上的点读出所表示的有理数吗?

二、学习重点:

会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。

三、学习难点:

利用数轴比较有理数的大小

四、学习过程:

(一)自主学习课本,回答问题:

1、像这样规定了、和的直线叫做数轴

2、数轴与温度计作类比,真像一个平放的________+3用数轴上位于原点___边___个单位的点表示,-4用数轴上位于原点___边___个单位的点表示,原点右边个单位的点表示____,原点左边1.5个单位的点表示_____.

(二)精讲点拨

1、完成例1

2、请画一条数轴表示下列有理数

+4,-1/2,1/2,-1.25,-4,0。

3、完成第10页第1、2题.

(三)、寻找规律,探究新知

1.观察以上数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?

2.在数轴上,表示4与-4的点到原点的距离各是多少?表示-1/2与1/2的点到原点的距离各是多少?由此你又有什么发现?

3.什么是绝对值?绝对值怎么表示?

(四)、巩固练习:

1.完成课本第11页练习1、2、3两题

2.在数轴上,表示数-3、2.6、+2、0、-1的点中,在原点左边的点有个。

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的`性质

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

3.与原点距离等于4的点有个?其表示的数是。

4.在数轴上,点A、B分别表示-5和2,则线段AB的长度是。

5.在数轴上点A表示-4,如果把原点O向负方向移动1个单位,那么在新数轴上点A表示的数是()

A.-5,B.-4C.-3D.-2

6.你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

五、谈谈你这堂课的学习体会

六、课后作业:

1、在数轴上表示-4的点位于原点的___边,与原点的距离是___个

单位长度。

2、在数轴上点A表示的数是-3,与点A相距两个单位的点表示的数是

3、数轴上与原点距离是5的点有___个,表示的数是___。

4、从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是____,再向右移动两个单位长度到达点C,则点C表示的数

是____。

5、数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移

动5个单位长度,那么终点到原点的距离是_____个单位长度

6、在数轴上P点表示2,现在将P点向右移动两个单位长度后再向左移

动5个单位长度,这时P点必须向___移动___个单位到达表

示-3的点

7.在数轴上表示-2的点离开原点的距离等于()

A、2B、-2C、±2D、4

8.请画一条数轴表示下列有理数

+3,-4,-3.5,-1.25,2,0。

更多精彩内容请点击:初中>初二>数学>初二数学教案

正数与负数导学案

一.学习目标:

1.什么是正负数?生活中有哪些相反意义的量?

2.有理数是怎样分类的?

二.学习重点难点:

1.重点:会用正负数表示实际生活中具有相反意义的量

2.难点:正负数的概念,有理数的分类。

三.学习过程

(一)、自学课本1--5页,回答以下问题?

1.举例说明正数和负数概念,写法及读法?

2.正数和负数可以表示生活中具有意义的量。例如,又如。

3.0这个数特别吗?为什么?

4.完成课本第6页练习第1题的1、2、3小题。

5.完成课本第6页练习第2题的1、2小题

6.飞机上升以正数表示,下降以负数表示,若飞机在1200米高空两次记录升降情况是+300米,-600米,这时飞机实际高度是米。

(二)、精讲点拨。

1、完成例1

交流你能举出一些用正负数表示数量的实例吗?

2、思考:

有理数

3、完成例2

《数轴》七年级数学教案精选篇2

课题:数轴

编写:审阅:

班级学号姓名使用日期_________

【学习目标】

1.利用数轴比较两个数的大小;用数轴帮助深化对数的认识;

2.探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想;

3.感受点在数轴上左右运动时,所表示数的大小变化.

【导学提纲】

1.观察数轴,比较右边的点表示的数与左边的点表示的数的大小关系;

并比较-3与-1,与1的大小关系.

2.观察数轴,比较正数、负数、0的大小关系.

【展示交流】

活动一:

1.在数轴上画出表示-5,3,-1,0,4的点.你能将这些数从大到小排列吗?说说你这样排列的理由.

2.2°C与-2°C哪个温度高?-1°C与0°C哪个温度高?-3°C与-4°C哪个温度高?在数轴上画出表示数2、-2;-1、0和-3,-4的.点,它们的位置关系如何?

3.把-3°C、-2°C、0°C、5°C按温度从低到高的顺序排列;在数轴上画出表示-3、-2、0、5的点,你能比较这几个数的大小吗?

活动二:

1.比较下列各组数的大小

(1)5和0(2)-0.5和0(3)-3、0、1.5(4)-3.5和-0.5

2.在数轴上画出下列各数的点,并用“<”将它们连接起来.

4,-2.5,0,-4.5,

【盘点收获】

【课堂反馈】

1.课本P18-19练一练1、2、3

2.在数轴上,到原点距离不大于2的所有整数是;

3.如图,在数轴上有三个点A、B、C,请回答:

(1)将点B向左移动3个单位后,三个点所表示的数谁最小?

(2)将点A向右移动4个单位后的数是多少?这时三个点所表示的数谁最小?

(3)将C点向左移动6个单位后,这时点B所表示的数比点C表示的数大多少?

(4)移动A、B、C中的两个点,使三个点表示的数相同,有几种移法?

【迁移创新】

利用数轴回答:

(1)写出所有不大于4且大于-3的整数:;

(2)不小于-4的非正整数是;

(3)比-2大的数是;-3比-6大.

【课堂作业】

课本P19习题3、4

《数轴》七年级数学教案精选篇3

学习目标

1.知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;

2.了解数形结合的数学思想。

3.进一步理解有理数与数轴上的点的对应关系;巩固在数轴上由数找点、由点读数的方法;

4.会借用数轴直观的进行有理数的大小比较,体会数形结合的数学思想。

重点是掌握数轴的概念和画法,明确其三要素缺一不可;利用数轴比较有理数的大小,并归纳出一般规律。

难点数轴上的点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对“形”的感性认识,培养动手、动脑和实际操作能力。

教学过程

一、自主学习(一)、自学课文P(二)、导学练习

1.有理数包括哪些数?0是正数还是负数?

2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?

3.思考:

①零上25℃用正数_____表示。0℃用数____表示;零下10℃用负数_____表示。

②什么叫数轴?数轴要具备哪三个要素?

③原点表示什么数?原点右方表示什么数?原点左方表示什么数?

④表示+2的点在什么位置?表示-3的点在什么位置?

⑤原点向右0.5个单位长度的A点表示什么数?原点向左1个单位长度的B点表示什么数

4.数轴的画法,有哪几个步骤?

5.我们还可以更简便的得出数轴的定义:规定了、和的直线叫做数轴。

、和是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的'。直线也不一定是水平的。

6.温度计里的大小:观察温度计的刻度,发现上边的温度总比下边的高。类似地,在数轴上表示的两个数,的数总比的数大。

进一步观察数轴,发现所有的负数都在“0”的,所有的正数都在“0”的,这说明什么?

正数都0;负数都0;正数一切负数。

(三)自学疑难摘要:

组长检查等级:

二合作探究

1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?

2.把下面各小题的数分别表示在三条数轴上:

(1)2,-1,0,,+3.5

(2)-5,0,+5,15,20;

(3)-1500,-500,0,500,1000。

想想看,第(3)小题数据比较大,那怎样表示呢?

3.把下列各组数用“<”号连接起来.

(1)–10,2,–14;

(2)–100,0,0.01;

(3),–4.75,3.75。

三、展示提升

1、每个同学自主完成二中的练习后先在小组内交流讨论。

2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。

3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

四、反馈与检测

1.判断下图中所画的数轴是否正确?

(1)

2.下面数轴上的点A、B、C、D、E分别表示什么数?

(2)

3.将-3、1.5、、-6、2.25、、-5、1各数用数轴上的点表示出来。

4.画一条数轴,并在上面标出下列的点。

±100±200±300

《数轴》七年级数学教案精选篇4

设计理念

这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的思想方法。

教学目标

1、知识与技能

(1)掌握数轴的三要素,能正确画出数轴。

(2)能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

2、过程与方法

使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

3、情感态度与价值观

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

重点正确掌握数轴画法和用数轴上的`点表示有理数。

难点有理数和数轴上的点的对应关系。

教学过程

1、创设情境1、让学生根据家乡的地图尝试画出自己家相对沙墩中学的位置,让学生初步体会生活中的平面问题可以简化为具体的直线问题来研究。

2、让学生在一条直线上画出第一排八名同学的位置各个物体的相对位置,从而使学生对本节课的学习目的有一个初步的认识。若以第三名同学为中心,以他的左边为负,右边为正表示出其它同学

3、让学生仔细观察温度计,对比学生所画图形与温度计的区别,学生会发现,温度计上有0刻度,0刻度以上为正数,0刻度以下为负数,那我们能否用类似温度计的图形来表示有理数呢?从而引出课题--数轴。

《数轴》七年级数学教案精选篇5

教学目标

1、了解数轴的概念和数轴的画法,掌握数轴的三要素;

2、会用数轴上的点表示有理数,会利用数轴比较有理数的大小;

3、使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议

一、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的`方法,为今后充分利用“数轴”这个工具打下基础。

二、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下表:

定义三要素应用

数形结合

规定了原点、正方向、单位长度的直线叫数轴原点

正方向

单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

三、教法建议

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、数轴的相关知识点

1、数轴的概念

(1)规定了原点、正方向和单位长度的直线叫做数轴。

这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。

(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

以数轴是理解有理数概念与运算的重要工具。有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的思想。另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对数轴的学习。

2、数轴的画法

(1)画直线(一般画成水平的)、定原点,标出原点“O”。

(2)取原点向右方向为正方向,并标出箭头。

(3)选适当的长度作为单位长度,并标出…,—3,—2,—1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3。用数轴比较有理数的大小

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、数轴定义的理解

《数轴》七年级数学教案精选篇6

教学目标

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法.

教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

难点:正确理解有理数与数轴上点的对应关系.

课堂教学过程设计

一、从学生原有认知结构提出问题

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.

二、讲授新课

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出数轴的`定义,即规定了原点、正方向和单位长度的直线叫做数轴.

进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

三、运用举例变式练习

例1画一个数轴,并在数轴上画出表示下列各数的点:

例2指出数轴上A,B,C,D,E各点分别表示什么数.

课堂练习

示出来.

2.说出下面数轴上A,B,C,D,O,M各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

四、小结

指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

五、作业

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)A,H,D,E,O各点分别表示什么数?

2.在下面数轴上,A,B,C,D各点分别表示什么数?

3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};

《数轴》七年级数学教案精选篇7

一、教学目标

【知识与技能】

了解数轴的概念,能用数轴上的点准确地表示有理数。

【过程与方法】

通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】

在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点

【教学重点】

数轴的三要素,用数轴上的点表示有理数。

【教学难点】

数形结合的思想方法。

三、教学过程

(一)引入新课

提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知

学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的'长度为单位长度。

提问3:你是如何理解数轴三要素的?

师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习

如图,写出数轴上点A,B,C,D,E表示的数。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:

课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

《数轴》七年级数学教案精选篇8

教学目标

1、了解数轴的概念和数轴的画法,掌握数轴的三要素;

2、会用数轴上的点表示有理数,会利用数轴比较有理数的大小;

3、使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议

一、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

二、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:

定义三要素应用

数形结合

规定了原点、正方向、单位长度的直线叫数轴原点

正方向

单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的.数总比左边的数要大

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

三、教法建议

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、数轴的相关知识点

1、数轴的概念

(1)规定了原点、正方向和单位长度的直线叫做数轴。

这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。

(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

以数轴是理解有理数概念与运算的重要工具。有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想。另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对数轴的学习。

2、数轴的画法

(1)画直线(一般画成水平的)、定原点,标出原点“O”。

(2)取原点向右方向为正方向,并标出箭头。

(3)选适当的长度作为单位长度,并标出…,—3,—2,—1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3。用数轴比较有理数的大小

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、数轴定义的理解

《数轴》七年级数学教案精选篇9

教学目标

1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

教学难点数轴的概念和用数轴上的点表示有理数

知识重点

教学过程(师生活动) 设计理念

设置情境

引入课题 教师通过实例、课件演示得到温度计读数.

问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

(多媒体出示3幅图,三个温度分别为零上、零度和零下)

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

(小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学

点表示数的感性认识。

点表示数的理性认识。

合作交流

探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

寻找规律

归纳结论 问题3:

1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4, 每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)

归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

巩固练习

教科书第12页练习

小结与作业

课堂小结 请学生总结:

1, 数轴的三个要素;

2, 数轴的作以及数与点的转化方法。

本课作业 1, 必做题:教科书第18页习题1.2第2题

2,选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1, 数轴是数形转化、结合的.重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

《数轴》七年级数学教案精选篇10

一、教学目标

1、知识目标:掌握数轴三要素,会画数轴。

2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

3、情感目标:向学生渗透数形结合的思想。

二、教学重难点

教学重点:数轴的三要素和用数轴上的点表示有理数。

教学难点:有理数与数轴上点的对应关系。

三、教法

主要采用启发式教学,引导学生自主探索去观察、比较、交流。

四、教学过程

(一)创设情境激活思维

1.学生观看钟祥二中相关背景视频

意图:吸引学生注意力,激发学生自豪感。

2.联系实际,提出问题。

问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

师生活动:学生思考解决问题的方法,学生代表画图演示。

学生画图后提问:

1.马路用什么几何图形代表?(直线)

2.文中相关地点用什么代表?(直线上的点)

3.学校大门起什么作用?(基准点、参照物)

4.你是如何确定问题中各地点的位置的?(方向和距离)

设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

师生活动:

学生思考后回答解决方法,学生代表画图。

学生画图后提问:

1.0代表什么?

2.数的符号的实际意义是什么?

3.-75表示什么?100表示什么?

设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

问题3:生活中常见的温度计,你能描述一下它的结构吗?

设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

问题4:你能说说上述2个实例的共同点吗?

设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

(二)自主学习探究新知

学生活动:带着以下问题自学课本第8页:

1.什么样的直线叫数轴?它具备什么条件。

2.如何画数轴?

3.根据上述实例的经验,“原点”起什么作用?

4.你是怎么理解“选取适当的长度为单位长度”的?

师生活动:

学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

至此,学生已会画数轴,师生共同归纳总结(板书)

①数轴的定义。

②数轴三要素。

练习:(媒体展示)

1.判断下列图形是否是数轴。

2.口答:数轴上各点表示的数。

3.在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

(三)小组合作交流展示

问题:观察数轴上的点,你有什么发现?

数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。

设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

(四)归纳总结反思提高

师生共同回顾本节课所学主要内容,回答以下问题:

1.什么是数轴?

2.数轴的“三要素”各指什么?

3.数轴的画法。

设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

(五)目标检测设计

1.下列命题正确的是()

A.数轴上的点都表示整数。

B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

C.数轴包括原点与正方向两个要素。

D.数轴上的点只能表示正数和零。

2.画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

3.画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是________。

五、板书

1.数轴的定义。

2.数轴的三要素(图)。

3.数轴的画法。

4.性质。

六、课后反思

附:活动单

活动一:画一画

钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

活动二:读一读

带着以下问题阅读教科书P8页:

1.什么样的直线叫数轴?

定义:规定了_________、________、_________的直线叫数轴。

数轴的三要素:_________、_________、__________。

2.画数轴的步骤是什么?

3.“原点”起什么作用?__________

4.你是怎么理解“选取适当的长度为单位长度”的?

练习:

1.画一条数轴

2.在你画好的`数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5

活动三:议一议

小组讨论:观察你所画的数轴上的点,你有什么发现?

归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度.

练习:

1.数轴上表示-3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。

2.距离原点距离为5个单位的点表示的数是________。

3.在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是________。

附:目标检测

1.下列命题正确的是()

A.数轴上的点都表示整数。

B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

C.数轴包括原点与正方向两个要素。

D.数轴上的点只能表示正数和零。

2.画数轴,在数轴上标出-5和+5之间的所有整数.列举到原点的距离小于3的所有整数。

3.画数轴,观察数轴,在原点左边的点有_______个。

4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是________。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:五年级下册数学教案

下一篇:返回列表