2023年八年级数学上册第十四章教案
2023年有关八年级数学上册第十四章教案5篇
数学指出函数的极大值往往在最不稳定的点取到,人追求极端就会失去内心的平衡。历史使人聪明,诗歌使人机智,数学使人精细。这里给大家分享一些关于2023年八年级数学上册第十四章教案,供大家参考学习。
2023年八年级数学上册第十四章教案【篇1】
一、学生起点分析
学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?
反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中
可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。
二、学习任务分析
本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理
并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:
● 知识与技能目标
1.理解勾股定理逆定理的具体内容及勾股数的概念;
2.能根据所给三角形三边的条件判断三角形是否是直角三角形。
● 过程与方法目标
1.经历一般规律的探索过程,发展学生的抽象思维能力;
2.经历从实验到验证的过程,发展学生的数学归纳能力。
● 情感与态度目标
1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;
2.在探索过程中体验成功的喜悦,树立学习的自信心。
教学重点
理解勾股定理逆定理的具体内容。
三、教法学法
1.教学方法:实验猜想归纳论证
本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验
但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,通过以旧引新,顺势教学过程;
(3)利用探索,研究手段,通过思维深入,领悟教学过程。
2.课前准备
教具:教材、电脑、多媒体课件。
学具:教材、笔记本、课堂练习本、文具。
四、教学过程设计
本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:
登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入
内容:
情境:1.直角三角形中,三边长度之间满足什么样的关系?
2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?
意图:
通过情境的创设引入新课,激发学生探究热情。
效果:
从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。
第二环节:合作探究
内容1:探究
下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:
1.这三组数都满足 吗?
2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。
意图:
通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
效果:
经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。
从上面的分组实验很容易得出如下结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
内容2:说理
提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?
意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
满足 的三个正整数,称为勾股数。
注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。
活动3:反思总结
提问:
1.同学们还能找出哪些勾股数呢?
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?
意图:进一步让学生认识该定理与勾股定理之间的关系
第三环节:小试牛刀
内容:
1.下列哪几组数据能作为直角三角形的三边长?请说明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一个三角形的三边长分别是 ,则这个三角形的面积是( )
A 250 B 150 C 200 D 不能确定
解答:B
3.如图1:在 中, 于 , ,则 是( )
A 等腰三角形 B 锐角三角形
C 直角三角形 D 钝角三角形
解答:C
4.将直角三角形的三边扩大相同的倍数后, (图1)
得到的三角形是( )
A 直角三角形 B 锐角三角形
C 钝角三角形 D 不能确定
解答:A
意图:
通过练习,加强对勾股定理及勾股定理逆定理认识及应用
效果
每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。
第四环节:登高望远
内容:
1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?
解答:由题意画出相应的图形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船转弯后,是沿正西方向航行的。
意图:
利用勾股定理逆定理解决实际问题,进一步巩固该定理。
效果:
学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。
第五环节:巩固提高
内容:
1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。
解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF
2.如图5,哪些是直角三角形,哪些不是,说说你的理由?
图4 图5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意图:
第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。
效果:
学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。
第六环节:交流小结
内容:
师生相互交流总结出:
1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;
2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。
意图:
鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。
效果:
学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。
第七环节:布置作业
课本习题1.4第1,2,4题。
五、教学反思:
1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。
2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。
4.注重对学习新知理解应用偏困难的学生的进一步关注。
5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。
由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。
附:板书设计
能得到直角三角形吗
情景引入 小试牛刀: 登高望远
2023年八年级数学上册第十四章教案【篇2】
教学任务分析
教学目标
知识技能
探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.
数学思考
能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.
解决问题
通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.
情感态度
在应用等腰梯形的性质的过程养成独立思考的习惯, 在数学学习活动中获得成功的体验.
重点
等腰梯形的性质及其应用.
难点
解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.
教学流程安排
活动流程图
活动的内容和目的
活动1想一想
活动2说一说
活动3画一画
活动4做—做
活动5练一练
活动6理一理
观察梯形图片,引入本节课的学习内容.
了解梯形定义、各部分名称及分类.
通过画图活动,初步发现梯形与三角形的转化关系.
探究得到等腰梯形的性质.
通过解决具体问题,寻找解决梯形问题的方法.
通过整理回顾,巩固知识、提高能力、渗透思想.
教学过程设计
问题与情景
师生行为
设计意图
[活动1]
观察下图中,有你熟悉的图形吗?它们有什么共同的特点?
演示图片,学生欣赏.
结合图片,教师引导学生注意这些图片的共同特征:一组对边平行而另一组对边不平行.
由现实中实际问题入手,设置问题情境,引出本课主题.通过学生观察图片和归纳图形的特点,培养学生的观察、概括能力.
[活动2]
梯形定义 一组对边平行而另一组对边不平行的四边形叫做梯形.
学生根据梯形概念画出图形,教师可以进一步引导学生类比梯形与平行四边形的区别和联系.
通过类比,培养学生归纳、总结的能力.
问题与情景
师生行为
设计意图
一些基本概念
(1)(如图):底、腰、高.
(2)等腰梯形:两腰相等的梯形叫做等腰梯形.
(3)直角梯形:有一个角是直角的梯形叫做直角梯形.
学生在小学已经对梯形有一定的感性认识,因此教师让学生自己介绍(1)中的基本概念,在聆听学生发言后, 教师可以强调:①梯形与四边形的关系;
②上、下底的概念是由底的长短来定义的,而并不是指位置来说的.
熟悉图形,明确概念,为探究图形性质做准备.
[活动3]
画一画
在下列所给图中的每个三角形中画一条线段,
(1)怎样画才能得到一个梯形?
(2)在哪些三角形中,能够得到一个等腰梯形?
在学生独立探究的基础上,学生分组交流.
教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其正确作图.
本次活动教师应重点关注:
(1)学生在活动过程中能否发现梯形与三角形之间的联系,他们之间的转化方法.
(2)学生能否将等腰三角形转化为等腰梯形.
(3)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.
等腰梯形的性质与等腰三角形相仿,因此在活动3中设计了第(2)题,在推导等腰梯形性质或需要添加辅助线时,可以借助等腰三角形来研究.尤其是根据等腰三角形是轴对称图形,可得到等腰梯形是轴对称图形这条性质,为活动4种开展探究奠定了基础.
问题与情景
师生行为
设计意图
[活动4]
做—做
探索等腰梯形的性质(引入用轴对称解决问题的思想).
在一张方格纸上作一个等腰梯形,连接两条对角线.
(1)这个图形是轴对称图形吗?对称轴在哪里?你能发现哪些相等的'线段和相等的角?学生画图并通过观察猜想;
(2)这个等腰梯形的两条对角线的长度有什么关系?
学生按照实验步骤,独立完成画图过程,观察图形,思考教师提出的问题,猜想、验证、归纳结论.
针对不同认识水平的学生,教师指导学生活动.
师生共同归纳:
①等腰梯形是轴对称图形,上下底的中点连线是对称轴.
②等腰梯形两腰相等.
③等腰梯形同一底上的两个角相等.
④等腰梯形的两条对角线相等.
教学中要注意引导学生证明等腰梯形的性质,尤其在证明“等腰梯形同一底上的两个角相等”这条性质时,“平移腰”和“作高”这两种常见的辅助线,在教学中头一次出现,可以借此机会,给学生介绍这两种辅助线的添加方法.
[活动5]
练—练
例1 (教材P118的例1)略.
例2 如图,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的长.
师生共同分析,寻找解决问题的方法和策略.
例1是等腰梯形性质的直接运用,请学生分析、解答,教师聆听,同时注意指导学生,在证明△EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(AD∥BC)”这一点.
分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.
其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通过题目的练习与讲解应让学生知道:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.
问题与情景
师生行为
设计意图
例3已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求证:BE=CD.
分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
证明(略)
例2与例3这里给出的辅助线均是“平移一腰”,老师们在教学或练习中可以根据学生的实际情况,再引导、补充其他辅助线的添加方法,让学生多了解、多见识.
[活动6]
1.小结
2.布置作业
(1)已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.
(2)已知:如图,
梯形ABCD中,CD//AB,,.
求证:AD=AB—DC.
(3)已知,如图,
梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)
师生归纳总结:
解决梯形问题常用的方法:
(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);
(2)“作高”:使两腰在两个直角三角形中(图2);
(3)“延腰”:构造具有公共角的两个等腰三角形(图3);
(4)“平移对角线”:使两条对角线在同一个三角形中(图4);
(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).
尽量多地让学生参与发言是一个交流的过程.
梳理本节课应用过的辅助线添加方法,既可以锻炼学生思维,又可以留给学生继续探究的空间.
学生通过独立思考,完成课后作业,便于发现问题,及时查漏补缺.
2023年八年级数学上册第十四章教案【篇3】
一、教学目标
1、理解分式的基本性质。
2、会用分式的基本性质将分式变形。
二、重点、难点
1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、练习题的意图分析
1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。
四、课堂引入
1、请同学们考虑:与相等吗?与相等吗?为什么?
2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解
P7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
P11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
P11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
2023年八年级数学上册第十四章教案【篇4】
【教学目标】
1.了解分式概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
【教学重难点】
重点:理解分式有意义的条件,分式的值为零的条件.
难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
【教学过程】
一、课堂导入
1.让学生填写[思考],学生自己依次填出:,,,.
2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.
3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.
[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.
二、例题讲解
例1:当x为何值时,分式有意义.
【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.
(补充)例2:当m为何值时,分式的值为0?
(1);(2);(3).
【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
三、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.当x取何值时,下列分式有意义?
3.当x为何值时,分式的值为0?
四、小结
谈谈你的收获.
五、布置作业
课本128~129页练习.
2023年八年级数学上册第十四章教案【篇5】
分式方程
教学目标
1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.
2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.
教学重点:
将实际问题中的等量 关系用分式方程表示
教学难点:
找实际问题中的等量关系
教学过程:
情境导入:
有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)
如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________
二、讲授新课
从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。
这 一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.
三.做一做:
为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为 人,那么 满足怎样的方程?
四.议一议:
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程
分式方程与整式方程有什么区别?
五、 随堂练习
(1)据联合国《20__年全球投资 报告》指出,中国20__年吸收外国投资额 达530亿美元,比上一年增加了13%。设20__年我国吸收外国投资额为 亿美元,请你写出 满足的方程。你能写出几个方程?其中哪一个是分式方程?
(2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2. 5千米/小时,求轮船的静水速度
(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好
六、学 习小结
本节课你学到了哪些知识?有什么感想?
七.作业布置