首页 > 教学资源 > 教案 > 数学教案 >

新北师大版八年级数学下册教案

彼岸分享 147948

彼岸 分享

新北师大版八年级数学下册教案(5篇)

数学的本质在於它的自由。不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上。这里给大家分享一些关于新北师大版八年级数学下册教案,供大家参考学习。

新北师大版八年级数学下册教案

新北师大版八年级数学下册教案(精选篇1)

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:PowerPoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的分类:(投影)

(二)等腰梯形性质的探究

【探究性质一】

思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】

(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

【探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

新北师大版八年级数学下册教案(精选篇2)

一、回顾交流,合作学习

【活动方略】

活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.

【问题探究1】(投影显示)

飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?

思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.(3000千米)

【活动方略】

教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.

学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.

【问题探究2】(投影显示)

一个零件的形状如右图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?为什么?

思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:

AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,这个零件符合要求.

【活动方略】

教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.

学生活动:思考后,完成“问题探究2”,小结方法.

解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

∴△ABD为直角三角形,∠A=90°.

在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

∴△BDC是直角三角形,∠CDB=90°

因此这个零件符合要求.

【问题探究3】

甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?

思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)

【活动方略】

教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.

学生活动:课堂练习,与同伴交流或举手争取上台演示

新北师大版八年级数学下册教案(精选篇3)

一、学习目标

1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点

重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m;

(2)(a2+ab)÷a;

(3)(4x2y+2xy2)÷2xy。

2.提问:

①说说你是怎样计算的;

②还有什么发现吗?

(三)总结法则

1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______

2.本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3—6a2+3a)÷3a;

(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x;

(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

E、多项式除以单项式法则。

新北师大版八年级数学下册教案(精选篇4)

一、学习目标及重、难点:

1、了解方差的定义和计算公式。

2、理解方差概念的产生和形成的过程。

3、会用方差计算公式来比较两组数据的波动大小。

重点:方差产生的必要性和应用方差公式解决实际问题。

难点:理解方差公式

二、自主学习:

(一)知识我先懂:

方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是

我们用它们的平均数,表示这组数据的方差:即用

来表示。

给力小贴士:方差越小说明这组数据越 。波动性越 。

(二)自主检测小练习:

1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。

2、甲、乙两组数据如下:

甲组:10 9 11 8 12 13 10 7;

乙组:7 8 9 10 11 12 11 12.

分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.

三、新课讲解:

引例:问题: 从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、 10、13、7、13、10、8、11、8;

乙:8、13、12、11、10、12、7、7、10、10;

问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数: = )

(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 )

归纳: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是

我们用它们的平均数,表示这组数据的方差:即用 来表示。

(一)例题讲解:

例1、 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、

测试次数第1次 第2次 第3次 第4次 第5次

段巍 13 14 13 12 13

金志强 10 13 16 14 12

给力提示:先求平均数,在利用公式求解方差。

(二)小试身手

1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定

去参加比赛。

1、求下列数据的众数:

(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?

四、课堂小结

方差公式:

给力提示:方差越小说明这组数据越 。波动性越 。

每课一首诗:求方差,有公式;先平均,再求差;

求平方,再平均;所得数,是方差。

五、课堂检测:

1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

六、课后作业:必做题:教材141页 练习1、2 选做题:练习册对应部分习题

七、学习小札记:

写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

新北师大版八年级数学下册教案(精选篇5)

一、素质教育目标

(一)知识教学点

1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

2.使学生理解判定定理与性质定理的区别与联系.

3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.

(二)能力训练点

1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

(三)德育渗透点

通过一题多解激发学生的学习兴趣.

(四)美育渗透点

通过学习,体会几何证明的方法美.

二、学法引导

构造逆命题,分析探索证明,启发讲解.

三、重点·难点·疑点及解决办法

1.教学重点:平行四边形的判定定理1、2、3的应用.

2.教学难点:综合应用判定定理和性质定理.

3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理

(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:最新求最大公因数教案

下一篇:2023年新北师大版八年级数学上册教案